

DEPARTMENT OF CIVIL ENGINEERING

COURSE STRUCTURE AND SYLLABUS

For UG – R20

B. TECH - CIVIL ENGINEERING

(Applicable for batches admitted from 2020-2021)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA - 533 003, Andhra Pradesh, India

DEPARTMENT OF CIVIL ENGINEERING

COURSE STRUCTURE

	cal – I SENIE					
S. No	Course Code	Subjects	L	Т	Р	Credits
1	BSC1101	Mathematics – I (Calculus & Differential Equations)	3	0	0	3
2	HSMC1101	Communicative English	3	0	0	3
3	BSC1102	Engineering Physics	3	0	0	3
4	ESC1101	Engineering Drawing	1	0	4	3
5	ESC1102	Engineering Geology (Integrated) (Theory & Lab)	2	0	2	3
6	HSMC1102	English Communication Skills Laboratory	0	0	3	1.5
7	BSC1103	Engineering Physics Lab	0	0	3	1.5
8	ESC1103	Basics of Civil Engg. Work Shop (Lab)	0	0	3	1.5
	Total Credits			19	9.5	

I Year – I SEMESTER

I Year – II SEMESTER

S. No	Course Code	Subjects	L	Т	Р	Credits
1	BSC1201	Mathematics – II (Linear Algebra & Numerical Methods)	3	0	0	3
2	BSC1202	Engineering Chemistry	3	0	0	3
3	ESC1201	Engineering Mechanics	3	0	0	3
4	ESC1202	Programming for Problem Solving Using C	3	0	0	3
5	ESC1203	Building Materials and Concrete Technology	3	0	0	3
6	BSC1203	Engineering Chemistry Lab	0	0	3	1.5
7	ESC1204	Programming for problem Solving Using C Lab	0	0	3	1.5
8	ESC1205	Building Planning and Computer Aided Building Drawing	0	0	3	1.5
9	MC1201	Environmental Science (M. C)	2	0	0	0
	Total Credits			19	9.5	

*Breakup of credits for Engineering Graphics/Engineering Workshop shall be 1-0-4 (as per AICTE model curriculum)

Universities/Institutions may swap a few courses between 1^{st} and 2^{nd} semesters to balance the work load of teaching and laboratory schedule.

DEPARTMENT OF CIVIL ENGINEERING

I Year - I Semester L T P C MATHEMATICS - I (CALCULUS & DIFFERENTIAL EQUATIONS) (BSC1101) 3 0 0 3 (Common to ALL branches of First Year B.Tech)

Course Objectives:

- To familiarize a variety of well-known sequences and series, with a developing intuition about the behaviour of new ones.
- To enlighten the learners in the concept of differential equations and multivariable calculus.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

Course Outcomes: At the end of the course, the student will be able to

- utilize mean value theorems to real life problems (L3)
- solve the differential equations related to various engineering fields (L3)
- familiarize with functions of several variables which is useful in optimization (L3)
- apply double integration techniques in evaluating areas bounded by region (L3)
- students will also learn important tools of calculus in higher dimensions. Students will become familiar with 2- dimensional and 3-dimensional coordinate systems (L5)

UNIT – I: Sequences, Series and Mean value theorems:

Sequences and Series: Convergences and divergence – Ratio test – Comparison tests – Integral test – Cauchy's root test – Alternate series – Leibnitz's rule.

Mean Value Theorems (without proofs): Rolle's Theorem – Lagrange's mean value theorem – Cauchy's mean value theorem – Taylor's and Maclaurin's theorems with remainders, Problems and applications on the above theorem.

UNIT – II: Differential equations of first order and first degree:

Linear differential equations – Bernoulli's equations – Exact equations and equations reducible to exact form.

Applications: Newton's Law of cooling – Law of natural growth and decay – Orthogonal trajectories – Electrical circuits.

UNIT – III: Linear differential equations of higher order:

Homogeneous and Non-homogeneous differential equations of higher order with constant coefficients – with non-homogeneous term of the type e^{ax} , sin ax, cos ax, polynomials in x^n , $e^{ax}V(x)$ and $x^nV(x)$ – Method of Variation of parameters, Cauchy and Legendre's linear equations. Applications: LCR circuit, Simple Harmonic motion.

UNIT – IV: Partial differentiation:

Introduction – Homogeneous function – Euler's theorem – Total derivative – Chain rule – Jacobian – Functional dependence – Taylor's and MacLaurin's series expansion of functions of two variables. Applications: Maxima and Minima of functions of two variables without constraints and Lagrange's method.

(10 hrs)

(10 hrs)

(10 hrs)

(10 hrs)

ATARINADA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF CIVIL ENGINEERING

UNIT – V: Multiple integrals:

(8 hrs)

Double and Triple integrals – Change of order of integration in double integrals – Change of variables to polar, cylindrical and spherical coordinates. Applications: Finding Areas and Volumes.

Text Books:

- 1. **B. S. Grewal**, Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- 2. **B. V. Ramana,**Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

Reference Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India.
- 2. Joel Hass, Christopher Heil and Maurice D. Weir, Thomas calculus, 14th Edition, Pearson.
- 3. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 2013.
- 4. Srimantha Pal, S C Bhunia, Engineering Mathematics, Oxford University Press.

DEPARTMENT OF CIVIL ENGINEERING

I Year - I Semester		L	Т	Р	С
		3	0	0	3
	COMMUNICATIVE ENGLISH (HSMC1101)				

Introduction

The course is designed to train students in receptive (listening and reading) as well as productive and interactive (speaking and writing) skills by incorporating a comprehensive, coherent and integrated approach that improves the learners' ability to effectively use English language in academic/ workplace contexts. The shift is from *learning about the language* to *using the language*. On successful completion of the compulsory English language course/s in B.Tech., learners would be confident of appearing for international language qualification/proficiency tests such as IELTS, TOEFL, or BEC, besides being able to express themselves clearly in speech and competently handle the writing tasks and verbal ability component of campus placement tests. Activity based teaching-learning methods would be adopted to ensure that learners would engage in actual use of language both in the classroom and laboratory sessions.

Course Objectives

- ➤ Facilitate effective listening skills for better comprehension of academic lectures and English spoken by native speakers
- ➤ Focus on appropriate reading strategies for comprehension of various academic texts and authentic materials
- ➤ Help improve speaking skills through participation in activities such as role plays, discussions and structured talks/oral presentations
- Impart effective strategies for good writing and demonstrate the same in summarizing, writing well organized essays, record and report useful information
- Provide knowledge of grammatical structures and vocabulary and encourage their appropriate use in speech and writing

Learning Outcomes

At the end of the module, the learners will be able to

- understand social or transactional dialogues spoken by native speakers of English and identify the context, topic, and pieces of specific information
- > ask and answer general questions on familiar topics and introduce oneself/others
- employ suitable strategies for skimming and scanning to get the general idea of a text and locate specific information
- recognize paragraph structure and be able to match beginnings/endings/headings with paragraphs
- ➢ form sentences using proper grammatical structures and correct word forms

DEPARTMENT OF CIVIL ENGINEERING

<u>Unit 1:</u>

Lesson-1: A Drawer full of happiness from "Infotech English", Maruthi Publications

Lesson-2: Deliverance by Premchand from "**The Individual Society**", Pearson Publications. (Non-detailed)

Listening: Listening to short audio texts and identifying the topic. Listening to prose, prose and conversation.

Speaking: Asking and answering general questions on familiar topics such as home, family, work, studies and interests. Self introductions and introducing others.

Reading: Skimming text to get the main idea. Scanning to look for specific pieces of information.

Reading for Writing: Paragraph writing (specific topics) using suitable cohesive devices; linkers, sign posts and transition signals; mechanics of writing - punctuation, capital letters.

Vocabulary: Technical vocabulary from across technical branches (20) GRE Vocabulary (20) (Antonyms and Synonyms, Word applications) Verbal reasoning and sequencing of words.

Grammar: Content words and function words; word forms: verbs, nouns, adjectives and adverbs; nouns: countables and uncountables; singular and plural basic sentence structures; simple question form - wh-questions; word order in sentences.

Pronunciation: Vowels, Consonants, Plural markers and their realizations

Unit 2:

Lesson-1: Nehru's letter to his daughter Indira on her birthday from "Infotech English", Maruthi Publications

Lesson-2: Bosom Friend by Hira Bansode from "The Individual Society", Pearson Publications.(Non-detailed)

Listening: Answering a series of questions about main idea and supporting ideas after listening to audio texts, both in speaking and writing.

Speaking: Discussion in pairs/ small groups on specific topics followed by short structured talks. Functional English: Greetings and leave takings. **Reading**: Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together.

Reading for Writing: Summarizing - identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions.

Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary Analogies (20 words) (Antonyms and Synonyms, Word applications)

DEPARTMENT OF CIVIL ENGINEERING

Grammar: Use of articles and zero article; prepositions.

Pronunciation: Past tense markers, word stress-di-syllabic words

<u>Unit 3:</u>

Lesson-1: Stephen Hawking-Positivity 'Benchmark' from "Infotech English", Maruthi Publications

Lesson-2: Shakespeare's Sister by Virginia Woolf from "The Individual Society", Pearson Publications.(Non-detailed)

Listening:Listening for global comprehension and summarizing what is listened to, both in speaking and writing.

Speaking: Discussing specific topics in pairs or small groups and reporting what is discussed.Functional English:Complaining and Apologizing.

Reading: Reading a text in detail by making basic inferences - recognizing and interpreting specific context clues; strategies to use text clues for comprehension.Critical reading.

Reading for Writing: Summarizing - identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions. Letter writing-types, format and principles of letter writing.E-mail etiquette, Writing CV's.

Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Association, sequencing of words

Grammar: Verbs - tenses; subject-verb agreement; direct and indirect speech, reporting verbs for academic purposes.

Pronunciation: word stress-poly-syllabic words.

<u>Unit 4:</u>

Lesson-1: Liking a Tree, Unbowed: Wangari Maathai-biography from "Infotech English", Maruthi Publications

Lesson-2: Telephone Conversation-Wole Soyinka from "The Individual Society", Pearson Publications.(Non-detailed)

Listening: Making predictions while listening to conversations/ transactional dialogues without video (only audio); listening to audio-visual texts.

Speaking: Role plays for practice of conversational English in academic contexts (formal and informal) - asking for and giving information/directions.Functional English: Permissions, Requesting, Inviting.

DEPARTMENT OF CIVIL ENGINEERING

Reading: Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicative process or display complicated data.

Reading for Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables.Writing SOP, writing for media.

Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters.

Grammar: Quantifying expressions - adjectives and adverbs; comparing and contrasting; degrees of comparison; use of antonyms

Pronunciation: Contrastive Stress

<u>Unit 5:</u>

Lesson-1: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications

Lesson-2: Still I Rise by Maya Angelou from "The Individual Society", Pearson Publications.(Non-detailed)

Listening: Identifying key terms, understanding concepts and interpreting the concepts both in speaking and writing.

Speaking: Formal oral presentations on topics from academic contexts - without the use of PPT slides.Functional English: Suggesting/Opinion giving.

Reading: Reading for comprehension. RAP StrategyIntensive reading and Extensive reading techniques.

Reading for Writing: Writing academic proposals- writing research articles: format and style.

Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, matching emotions.

Grammar: Editing short texts – identifying and correcting common errors in grammar and usage (articles, prepositions, tenses, subject verb agreement)

Pronunciation: Stress in compound words

Prescribed text books for theory for Semester-I:

1. "Infotech English", Maruthi Publications. (Detailed)

2."The Individual Society", Pearson Publications.(Non-detailed)

Prescribed text book for Laboratory for Semesters-I & II:

1. "Infotech English", Maruthi Publications. (with Compact Disc)

DEPARTMENT OF CIVIL ENGINEERING

Reference Books:

- Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- Chase, Becky Tarver. *Pathways: Listening, Speaking and Critical Thinking*. Heinley ELT; 2nd Edition, 2018.
- Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- Hewings, Martin. *Cambridge Academic English (B2)*. CUP, 2012.

DEPARTMENT OF CIVIL ENGINEERING

I Voon I Somoston		L	Т	Р	С				
I Year - I Semester		3	0	0	3				
	ENGINEERING PHYSICS (BSC1102)								
(For A	(For All Non-Circuital Branches like ME, CE, Chemical etc.)								

COURSE OBJECTIVES

- 1. Bridging the gap between the physics in school at 10+2 level and UG level engineering courses.
- 2. To identify the importance of the optical phenomenon i.e. interference, diffraction and polarization related to its Engineering applications
- 3. Understand the mechanism for emission of light, utility of lasers as coherent light sources for low and high energy applications, study of propagation of light through optical fibers and their implications in optical communications.
- 4. Open new avenues of utility for dielectric and magnetic materials as potential sources for micro devices.
- 5. Familiarize the concepts of theoretical acoustics for their practical utility in engineering acoustics. Explanation for the significance of ultrasound and its application in NDT application.
- 6. Enlighten the periodic arrangement of atoms in Crystalline solids by Bragg's law Learning the structural analysis through X-ray diffraction.

COURSE OUTCOMES

- Explain the need of coherent sources and the conditions for sustained interference (L2). Identify applications of interference in engineering (L3). Analyze the differences between interference and diffraction with applications (L4). Illustrate the concept of polarization of light and its applications (L2). Classify ordinary polarized light and extraordinary polarized light (L2) The different realms of physics and their applications in both scientific and technological systems are achieved through the study of wave optics.
- 2. Explain various types of emission of radiation (L2). Identify lasers as tools in engineering applications (L3). Describe the construction and working principles of various types of lasers (L1). Explain the working principle of optical fibers (L2). Classify the optical fibers based on refractive index profiles and modes of propagation (L2). Identify the applications of optical fibers in medical, communication and other fields (L2). Apply the fiber optic concepts in various fields (L3).
- 3. Explain the concept of dielectric constant and polarization in dielectric materials (L2). Summarize various types of polarization of dielectrics (L2). Interpret Lorentz field and Claussius- Mosotti relation in dielectrics (L2). Classify the magnetic materials based on susceptibility and their temperature dependence (L2). Explain the applications of dielectric and magnetic materials (L2). Apply the concept of magnetism to magnetic devices (L3).
- 4. Explain sound waves and its propagation/absorption of construction material used in design of buildings (L2). Analyze acoustic parameters of typical materials used in buildings (L4). Recognize sound level disruptors and their application in architectural acoustics (L2). Identify the use of ultrasonics in diversified fields of engineering (L3)
- 5. **Interpret** various crystal systems (L2) and **Analyze** the characterization of materials by XRD (L4). **Identify** the important properties of crystals like the presence of long-range order and periodicity, structure determination using X-ray diffraction technique (L3). **Analysis** of structure of the crystals by Laue and Powder techniques (L2)

DEPARTMENT OF CIVIL ENGINEERING

Unit-I: Wave Optics

12hrs

Interference: Principle of superposition –Interference of light - Interference in thin films (Reflection Geometry) & applications -Colors in thin films- Newton's Rings- Determination of wavelength and refractive index.

Diffraction: Introduction - Fresnel and Fraunhofer diffraction - Fraunhofer diffraction due to single slit, double slit - N-slits(Qualitative) – Grating - Dispersive power and resolving power of Grating(Qualitative).

Polarization: Introduction-Types of polarization - Polarization by reflection, refraction and Double refraction - Nicol's Prism -Half wave and Quarter wave plates.

Unit Outcomes:

The students will be able to

- **Explain** the need of coherent sources and the conditions for sustained interference (L2)
- Identify engineering applications of interference (L3)
- > Analyze the differences between interference and diffraction with applications (L4)
- Illustrate the concept of polarization of light and its applications (L2)
- > Classify ordinary polarized light and extraordinary polarized light (L2)

Unit-II: Lasers and Fiber optics

Lasers: Introduction – Characteristics of laser – Spontaneous and Stimulated emissions of radiation – Einstein's coefficients – Population inversion –Lasing action- Pumping mechanisms – Ruby laser – He-Ne laser - Applications of lasers.

Fiber optics: Introduction –Principle of optical fiber- Acceptance Angle-Numerical Aperture-Classification of optical fibers based on refractive index profile and modes –Propagation of electromagnetic wave through optical fibers - Applications.

Unit Outcomes:

The students will be able to

- > Understand the basic concepts of LASER light Sources (L2)
- > Apply the concepts to learn the types of lasers (L3)
- Identifies the Engineering applications of lasers (L2)
- **Explain** the working principle of optical fibers (L2)
- > Classify optical fibers based on refractive index profile and mode of propagation (L2)
- > Identify the applications of optical fibers in various fields (L2)

UNIT III: Engineering Materials

Dielectric Materials: Introduction - Dielectric polarization - Dielectric polarizability, Susceptibility and Dielectric constant - Types of polarizations- Electronic (Quantitative), Ionic (Quantitative) and Orientation polarizations (Qualitative) - Lorentz internal field- Clausius-Mossotti equation-Piezoelectricity.

Magnetic Materials: Introduction - Magnetic dipole moment - Magnetization-Magnetic susceptibility and permeability - Origin of permanent magnetic moment - Classification of magnetic materials: Dia, para, Ferro, antiferro & Ferrimagnetic materials - Domain concept for Ferromagnetism & Domain walls (Qualitative) - Hysteresis - soft and hard magnetic materials- Eddy currents- Engineering applications.

10hrs

8hrs

DEPARTMENT OF CIVIL ENGINEERING

Unit Outcomes:

The students will be able to

- **Explain** the concept of dielectric constant and polarization in dielectric materials (L2)
- Summarize various types of polarization of dielectrics (L2)
- > Interpret Lorentz field and Claussius- Mosotti relation in dielectrics(L2)
- Classify the magnetic materials based on susceptibility and their temperature dependence (L2)
- **Explain** the applications of dielectric and magnetic materials (L2)
- > Apply the concept of magnetism to magnetic devices (L3)

Unit-IV: Acoustics and Ultrasonics

Acoustics: Introduction – requirements of acoustically good hall– Reverberation – Reverberation time– Sabine's formula (Derivation using growth and decay method) - Absorption coefficient and its determination – Factors affecting acoustics of buildings and their remedial measures.

Ultrasonics: Introduction - Properties - Production by magnetostriction and piezoelectric methods – Detection - Acoustic grating - Non Destructive Testing – pulse echo system through transmission and reflection modes - Applications.

Unit Outcomes:

The students will be able to

- **Explain** how sound is propagated in buildings (L2)
- > Analyze acoustic properties of typically used materials in buildings (L4)
- **Recognize** sound level disruptors and their use in architectural acoustics (L2)
- > Identify the use of ultrasonics in different fields (L3)

Unit-V: Crystallography and X-ray diffraction

Crystallography: Space lattice, Basis, Unit Cell and lattice parameters – Bravais Lattice – crystal systems (3D) – coordination number - packing fraction of SC, BCC & FCC - Miller indices – separation between successive (hkl) planes.

X-ray diffraction: Bragg's law - X-ray Diffractometer – crystal structure determination by Laue's and powder methods.

Unit Outcomes:

The students will be able to

- Classify various crystal systems (L2)
- > **Identify** different planes in the crystal structure (L3)
- > Analyze the crystalline structure by Bragg's X-ray diffractometer (L4)
- > Apply powder method to measure the crystallinity of a solid (L4)

Text books:

- 1. Engineering Physics Dr. M.N. Avadhanulu & Dr. P.G. Kshirsagar, S. Chand and Company
- 2. Engineering physics D.K. Battacharya and Poonam Tandon, Oxford University press.
- 3. Engineering Physics by P.K.Palanisamy SciTech publications.

Reference Books:

- 1. Fundamentals of Physics Halliday, Resnick and Walker, John Wiley & Sons
- 2. Engineering Physics M.R.Srinivasan, New Age Publications
- 3. Engineering Physics D K Pandey, S. Chaturvedi, Cengage Learning
- 4. Engineering Physics Sanjay D. Jain, D. Sahasrambudhe and Girish, University Press

8hrs

A KINADA

10hrs

DEPARTMENT OF CIVIL ENGINEERING

I Voor I Comostor	Year - I Semester	L	Т	Р	С
1 Year - I Semester		1	0	4	3
	ENGINEERING DRAWING (ESC1101)				

Course Objective: Engineering drawing being the principal method of communication for engineers, the objective is to introduce the students, the techniques of constructing the various types of polygons, curves and scales. The objective is also to visualize and represent the 3D objects in 2D planes with proper dimensioning, scaling etc.

Unit I

Objective: To introduce the students to use drawing instruments and to draw polygons, Engg. Curves.

Polygons: Constructing regular polygons by general methods, inscribing and describing polygons on circles.

Curves: Parabola, Ellipse and Hyperbola by general and special methods, cycloids, involutes, tangents &normals for the curves.

Scales: Plain scales, diagonal scales and vernier scales

Unit II

Objective: To introduce the students to use orthographic projections, projections of points & simple lines. To make the students draw the projections of the lines inclined to both the planes.

Orthographic Projections: Reference plane, importance of reference lines, projections of points in various quadrants, projections of lines, line parallel to both the planes, line parallel to one plane and inclined to other plane.

Projections of straight lines inclined to both the planes, determination of true lengths, angle of inclination and traces.

Unit III

Objective: The objective is to make the students draw the projections of the plane inclined toboth the planes.

Projections of planes: regular planes perpendicular/parallel to one reference plane and inclined to the other reference plane; inclined to both the reference planes.

Unit IV

Objective: The objective is to make the students draw the projections of the various types of solids in different positions inclined to one of the planes.

Projections of Solids – Prisms, Pyramids, Cones and Cylinders with the axis inclined to both the planes.

Unit V

Objective: The objective is to represent the object in 3D view through isometric views. The student will be able to represent and convert the isometric view to orthographic view and vice versa.

Conversion of isometric views to orthographic views; Conversion of orthographic views to isometric views.

Computer Aided Design, Drawing practice using Auto CAD, Creating 2D&3D drawings of objects using Auto CAD

DEPARTMENT OF CIVIL ENGINEERING

Note: In the End Examination there will be no question from CAD.

TEXT BOOKS:

- 1. Engineering Drawing by N.D. Butt, Chariot Publications
- 2. Engineering Drawing by Agarwal & Agarwal, Tata McGraw Hill Publishers

REFERENCE BOOKS:

- 1. Engineering Drawing by K.L.Narayana& P. Kannaiah, Scitech Publishers
- 2. Engineering Graphics for Degree by K.C. John, PHI Publishers
- 3. Engineering Graphics by PI Varghese, McGrawHill Publishers
- 4. Engineering Drawing + AutoCad K Venugopal, V. Prabhu Raja, New Age

Course Outcome: The student will learn how to visualize 2D & 3D objects.

DEPARTMENT OF CIVIL ENGINEERING

I Year - I Semester		L	Т	Р	С
1 Year - 1 Semester		2	0	2	3
	ENGINEERING GEOLOGY				
I	ntegrated (Theory & Lab) (ESC1102)				

Course Learning Objectives:

The objective of this course is:

- To introduce the course: Engineering Geology to the Civil Engineering graduates.
- To enable the students, understand what minerals and rocks are and their formation and identification.
- To highlight significance/ importance/ role of Engineering Geology in construction of Civil Engineering structures.
- To enable the student, realise its importance and applications of Engineering Geology in Civil Engineering constructions.

Course Outcomes:

Upon the successful completion of this course, the students will be able to:

- Identify and classify the geological minerals
- Measure the rock strengths of various rocks
- Classify and measure the earthquake prone areas to practice the hazard zonation
- Classify, monitor and measure the Landslides and subsidence
- Prepares, analyses and interpret the Engineering Geologic maps
- Analyses the ground conditions through geophysical surveys.
- Test the geological material and ground to check the suitability of civil engineering project construction.
- Investigate the project site for mega/mini civil engineering projects. Site selection for mega engineering projects like Dams, Tunnels, disposal sites etc.

UNIT-I:

Introduction: Branches of Geology, Importance of Geology in Civil Engineering with case studies. **Weathering:** Weathering of rocks, Geological agents, weathering process of Rock, Rivers and geological work of rivers.

UNIT-II

Mineralogy and Petrology: Definitions of mineral and rock-Different methods of study of mineral and rock. Physical properties of minerals and rocks for megascopic study for the following minerals and rocks. Common rock forming minerals: Feldspar, Quartz Group, Olivine, Augite, Hornblende, Mica Group, Asbestos, Talc, Chlorite, Kyanite, Garnet, Calcite and ore forming minerals are Pyrite, Hematite, Magnetite, Chlorite, Galena, Pyrolusite, Graphite, Chromite, Magnetite and Bauxite. Classification, structures, textures and forms of Igneous rocks, Sedimentary rocks, Metamorphic rocks, and their megascopic study of granite varieties, (pink, gray, green). Pegmatite, Dolerite, Basalt etc., Shale, Sand Stone, Lime Stone, Laterite, Quartzite, Gneiss, Schist, Marble, Khondalite and Slate.

UNIT-III

Structural Geology: Strike, Dip and Outcrop study of common geological structures associating with the rocks such as Folds, Faults, Joints and Unconformities- parts, types, mechanism and their importance in Civil Engineering.

DEPARTMENT OF CIVIL ENGINEERING

UNIT-IV

Ground Water: Water table, Cone of depression, Geological controls of Ground Water Movement, Ground Water Exploration Techniques.

Earthquakes and Land Slides: Terminology, Classification, causes and effects, Shield areas and Seismic bells, Richter scale intensity, Precautions of building constructions in seismic areas. Classification of Landslides, Causes and Effects, measures to be taken prevent their occurrence at Landslides.

Geophysics: Importance of Geophysical methods, Classification, Principles of Geophysical study by Gravity method, Magnetic method, Electrical methods, Seismic methods, Radiometric method and Electrical resistivity, Seismic refraction methods and Engineering properties of rocks.

UNIT-V

Geology of Dams, Reservoirs and Tunnels: Types and purpose of Dams, Geological considerations in the selection of a Dam site. Geology consideration for successful constructions of reservoirs, Life of Reservoirs. Purpose of Tunnelling, effects, Lining of Tunnels. Influence of Geology for successful Tunnelling.

TEXT BOOKS:

- 1. 'Engineering Geology' by Subinoy Gangopadhay, Oxford University press.
- 2. 'Engineering Geology' by D. Venkat Reddy, Vikas Publishing House pvt. Ltd, 2013.
- 3. 'Engineering Geology' by N. Chennkesavulu, Trinity Press (Laxmi Publications), 2nd Edition, 2014.
- 4. 'Engineering Geology' by Vasudev Kanithi, University Press.

REFERENCES:

- 1. 'Engineering Geology for Civil Engineers' by P.C. Varghese, PHI learning pvt. Ltd.
- 'Geology for Engineers and Environmental Society' by Alan E Kehew, person publications, 3rd edition
- 3. 'Fundamentals of Engineering Geology' by P.G.Bell, B.S.P. Publications, 2012.
- 4. 'Engineering Geology' by V.Parthesarathi et al., Wiley Publications
- 5. 'Environmental Geology' by K.S.Valdiya, McGraw Hill Publications, 2nded.

* * *

DEPARTMENT OF CIVIL ENGINEERING

ENGINEERING GEOLOGY LAB

Syllabus

Course Learning Objectives:

The objective of this course is:

- To identify the Megascopic types of Ore minerals & Rock forming minerals.
- To identify the Megascopic types of Igneous, Sedimentary, Metamorphic rocks.
- To identify the topography of the site & material selection.

Course Outcomes:

Upon the successful completion of this course, the students will be able to:

- Identify Megascopic minerals & their properties.
- Identify Megascopic rocks & their properties.
- Identify the site parameters such as contour, slope & aspect for topography.
- Know the occurrence of materials using the strike & dip problems.

SYLLABUS:

LIST OF EXPERIMENTS

- 1. Physical properties of minerals: Mega-scopic identification of
 - a. Rock forming minerals Quartz group, Feldspar group, Garnet group, Mica group & Talc, Chlorite, Olivine, Kyanite, Asbestos, Tourmelene, Calcite, Gypsum, etc...
 - b. Ore forming minerals Magnetite, Hematite, Pyrite, Pyralusite, Graphite, Chromite, etc...
- 2. Megascopic description and identification of rocks.
 - a) Igneous rocks Types of Granite, Pegmatite, Gabbro, Dolerite, Syenite, Granite Poryphery, Basalt, etc.
 - b) Sedimentary rocks Sand stone, Ferrugineous sand stone, Lime stone, Shale, Laterite, Conglamorate, etc.
 - c) Metamorphic rocks Biotite Granite Gneiss, Slate, Muscovite &Biotiteschist, Marble, Khondalite, etc.
- 3. Interpretation and drawing of sections for geological maps showing tilted beds, faults, unconformities etc.
- 4. Simple Structural Geology problems.
- 5. Bore hole data.
- 6. Strength of the rock using laboratory tests.
- 7. Field work To identify Minerals, Rocks, Geomorphology & Structural Geology.

DEPARTMENT OF CIVIL ENGINEERING

LAB EXAMINATION PATTERN:

- 1. Description and identification of FOUR minerals
- 2. Description and identification of FOUR (including igneous, sedimentary and metamorphic rocks)
- 3. ONE Question on Interpretation of a Geological map along with a geological section.
- 4. TWO Questions on Simple strike and Dip problems.
- 5. Bore hole problems.
- 6. Project report on geology.

REFERENCES:

- 1. 'Applied Engineering Geology Practicals' by M T Mauthesha Reddy, New Age International Publishers, 2nd Edition.
- 2. 'Foundations of Engineering Geology' by Tony Waltham, Spon Press, 3rd edition, 2009.

* * *

DEPARTMENT OF CIVIL ENGINEERING

I Year - I Semester		L	Т	Р	С
1 rear - 1 Semester		0	0	3	1.5
ENGL	ISH COMMUNCATION SKILLS LAB (HS	SMC11	02)		

TOPICS

UNIT I:

Vowels, Consonants, Pronunciation, Phonetic Transcription, Common Errors in Pronunciation,

UNIT II:

Word stress-di-syllabic words, poly-syllabic words, weak and strong forms, contrastive stress (Homographs)

UNIT III:

Stress in compound words, rhythm, intonation, accent neutralisation.

UNIT IV:

Listening to short audio texts and identifying the context and specific pieces of information toanswer a series of questions in speaking.

UNIT V:

Newspapers reading;Understanding and identifying key terms and structures useful for writing reports.

Prescribed text book: "Infotech English", Maruthi Publications.

References:

- 1. Exercises in Spoken English Part 1,2,3,4, OUP and CIEFL.
- 2. English Pronunciation in use- Mark Hancock, Cambridge University Press.
- 3. English Phonetics and Phonology-Peter Roach, Cambridge University Press.
- 4. English Pronunciation in use- Mark Hewings, Cambridge University Press.
- 5. English Pronunciation Dictionary- Daniel Jones, Cambridge University Press.
- 6. English Phonetics for Indian Students- P. Bala Subramanian, Mac Millan Publications.

DEPARTMENT OF CIVIL ENGINEERING

I Voor I Somoston	I Year - I Semester		Τ	Р	С		
1 Tear - I Semester		0	0	3	1.5		
	ENGINEERING PHYSICS LAB (BSC1103)						
(For All Non-Circuital Branches like ME, CE, Chemical etc)							

(Any 10 of the following listed experiments)

List of Engineering Physics Experiments

- 1. Laser: Determination of wavelength using diffraction grating.
- 1. Young's modulus of given material by Strain gauge method.
- 2. Study of variation of magnetic field along the axis of a current carrying circular coil by Stewart & Gee's method.
- 3. Determination of ultrasonic velocity in given liquid (Acoustic grating).
- 4. Determination of dielectric constant using charging and discharging method.
- 5. Study the variation of B versus H by magnetizing the magnetic material (B-H curve).
- 6. Estimation of Planck's constant using photoelectric effect.
- 7. Rigidity modulus of material of a wire-dynamic method (Torsional pendulum).
- 8. Determination of numerical aperture and acceptance angle of an optical fiber.
- 9. Determination of thickness of thin object by wedge method.
- 10. Determination of radius of curvature of given plano convex lens by Newton's rings.
- 11. Determination of wavelengths of different spectral lines in mercury spectrum using diffraction grating in normal incidence configuration.
- 12. Determination of dispersive power of the prism.
- 13. Sonometer: Verification of laws of string.
- 14. Measurement of magnetic susceptibility by Kundt's tube method.

References:

1. S. Balasubramanian, M.N. Srinivasan "A Text book of Practical Physics"- S Chand Publishers, 2017.

DEPARTMENT OF CIVIL ENGINEERING

I Year - I Semester	L	Т	Р	С
1 Year - I Semester	0	0	3	1.5
D A G	21100			

BASICS OF CIVIL ENGG. (WORK SHOP) LAB (ESC1103)

COURSE OBJECTIVES:

- a. To outline the process of identification of various building components and their estimation
- b. To provide knowledge on operation of the various survey instruments used for linear and angular measurements.
- c.To explain the concept of measurement of discharge and velocity in a pipe and density of water
- d. To demonstrate automatic weather station

COURSE OUTCOMES:

Learners at the end of this Laboratory course will be able to

- ✤ Identify various components of a building and give lump-sum estimate.
- Determine distances and irregular areas using conventional survey instruments like chain, tape, cross-staff and compass
- Identify different soils
- Know various traffic signs & signals
- Determine centre of gravity and moment of inertia of channel and I-sections.
- Set out a signal room building as per given plan
- Install simple sanitary filling and find discharge/velocity in a water pipe line as density of water
- * Know to the process of making cement mortar / concrete for nominal mix

LIST OF EXPERIMENTS

- 1. Demonstration on usage of chain
- 2. Ranging offsets chain-age
- 3. To find the area of an irregular polygon using chain by using horizontal measurements
- 4. Determination of bearings and included angles with prismatic compass.
- 5. Demonstration on various Building materials used in construction
- 6. Estimation of quantity of bricks, concrete, wood, paint for the given single room building
- 7. Masonry work hands on practice work deferent types of bonds in brick masonry
- 8. Identification of quality of brick through physical tests
- 9. Identification of soil based on their physical properties
- 10. Setting out of building: The student is required to set out a building (Single room only) as per the given building plan using tape and cross staff.
- 11. Demonstration on Installation of simple sanitary fittings and fixtures like Tap, T-joint, Elbow, bend, threading etc.
- 12. Finding the discharge velocity in a water pipe line also find density of water
- 13. Computation of Centre of gravity and moment of inertial of (i) I-section and (ii) Channel section.
- 14. Welding (arc welding and gas welding)

DEPARTMENT OF CIVIL ENGINEERING

- 15. Carpentry (Demonstration)
- 16. Identify deferent types of roads in the campus and write the physical characteristics of layers
- 17. Demonstration on making of cement mortar/concrete for the given nominal mix
- 18. Study of given Topo-sheet

REFERENCE BOOKS

1. Laboratory Manual for Basic Civil Engineering workshops

DEPARTMENT OF CIVIL ENGINEERING

COURSE STRUCTURE AND SYLLABUS

For UG – R20

B. TECH - CIVIL ENGINEERING

(Applicable for batches admitted from 2020-2021)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA - 533 003, Andhra Pradesh, India

DEPARTMENT OF CIVIL ENGINEERING

COURSE STRUCTURE

	cal – I SENIE					
S. No	Course Code	Subjects	L	Т	Р	Credits
1	BSC1101	Mathematics – I (Calculus & Differential Equations)	3	0	0	3
2	HSMC1101	Communicative English	3	0	0	3
3	BSC1102	Engineering Physics	3	0	0	3
4	ESC1101	Engineering Drawing	1	0	4	3
5	ESC1102	Engineering Geology (Integrated) (Theory & Lab)	2	0	2	3
6	HSMC1102	English Communication Skills Laboratory	0	0	3	1.5
7	BSC1103	Engineering Physics Lab	0	0	3	1.5
8	ESC1103	Basics of Civil Engg. Work Shop (Lab)	0	0	3	1.5
	Total Credits			19	9.5	

I Year – I SEMESTER

I Year – II SEMESTER

S. No	Course Code	Subjects	L	Т	Р	Credits
1	BSC1201	Mathematics – II (Linear Algebra & Numerical Methods)	3	0	0	3
2	BSC1202	Engineering Chemistry	3	0	0	3
3	ESC1201	Engineering Mechanics	3	0	0	3
4	ESC1202	Programming for Problem Solving Using C	3	0	0	3
5	ESC1203	Building Materials and Concrete Technology	3	0	0	3
6	BSC1203	Engineering Chemistry Lab	0	0	3	1.5
7	ESC1204	Programming for problem Solving Using C Lab	0	0	3	1.5
8	ESC1205	Building Planning and Computer Aided Building Drawing	0	0	3	1.5
9	MC1201	Environmental Science (M. C)	2	0	0	0
Total Credits				19	9.5	

*Breakup of credits for Engineering Graphics/Engineering Workshop shall be 1-0-4 (as per AICTE model curriculum)

Universities/Institutions may swap a few courses between 1^{st} and 2^{nd} semesters to balance the work load of teaching and laboratory schedule.

DEPARTMENT OF CIVIL ENGINEERING

I Voon II Somoston		L	Т	Р	С
I Year - II Semester		3	0	0	3
MATHEMATIC	S –II (LINER ALGEBRA & NUMERICAL	MET	THOI	DS)	

Course Objectives:

- To instruct the concept of Matrices in solving linear algebraic equations
- To elucidate the different numerical methods to solve nonlinear algebraic equations
- To disseminate the use of different numerical techniques for carrying out numerical integration.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

Course Outcomes: At the end of the course, the student will be able to

- develop the use of matrix algebra techniques that is needed by engineers for practical applications (L6)
- solve system of linear algebraic equations using Gauss elimination, Gauss Jordan, Gauss Seidel (L3)
- evaluate the approximate roots of polynomial and transcendental equations by different algorithms (L5)
- apply Newton's forward & backward interpolation and Lagrange's formulae for equal and unequal intervals (L3)
- apply numerical integral techniques to different Engineering problems (L3)
- apply different algorithms for approximating the solutions of ordinary differential equations with initial conditions to its analytical computations (L3)

UNIT – I: Solving systems of linear equations, Eigen values and Eigen vectors: (10 hrs)

Rank of a matrix by echelon form and normal form – Solving system of homogeneous and non-homogeneous linear equations – Gauss Elimination method – Eigenvalues and Eigen vectors and properties (article-2.14 in text book-1).

Unit – II: Cayley–Hamilton theorem and Quadratic forms:

Cayley-Hamilton theorem (without proof) – Applications – Finding the inverse and power of a matrix by Cayley-Hamilton theorem – Reduction to Diagonal form – Quadratic forms and nature of the quadratic forms – Reduction of quadratic form to canonical forms by orthogonal transformation. Singular values of a matrix, singular value decomposition (text book-3).

UNIT – III: Iterative methods:

Introduction – Bisection method – Secant method – Method of false position – Iteration method – Newton-Raphson method (One variable and simultaneous Equations) – Jacobi and Gauss-Seidel methods for solving system of equations numerically.

UNIT – IV: Interpolation:

Introduction – Errors in polynomial interpolation – Finite differences – Forward differences – Backward differences – Central differences – Relations between operators – Newton's forward and

(8 hrs)

(10 hrs)

(10 hrs)

DEPARTMENT OF CIVIL ENGINEERING

backward formulae for interpolation – Interpolation with unequal intervals – Lagrange's interpolation formula – Newton's divide difference formula.

UNIT – V: Numerical differentiation and integration, Solution of ordinary differential equations with initial conditions: (10 hrs)

Numerical differentiation using interpolating polynomial – Trapezoidal rule – Simpson's $1/3^{rd}$ and $3/8^{th}$ rule– Solution of initial value problems by Taylor's series – Picard's method of successive approximations – Euler's method –Runge-Kutta method (second and fourth order).

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- **2. B. V. Ramana,**Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.
- 3. David Poole, Linear Algebra- A modern introduction, 4th Edition, Cengage.

Reference Books:

- **1. Steven C. Chapra,** Applied Numerical Methods with MATLAB for Engineering and Science, Tata Mc. Graw Hill Education.
- 2. M. K. Jain, S. R. K. Iyengar and R. K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications.
- 3. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press.

DEPARTMENT OF CIVIL ENGINEERING

I Year - II Semester		L	Τ	Р	С		
		3	0	0	3		
ENGINEERING CHEMISTRY (BS1202) ((Non-circuit branches)							

Knowledge of basic concepts of Chemistry for Engineering students will help them as professional engineers later in design and material selection, as well as utilizing the available resources.

COURSE OBJECTIVES

- *Importance* of usage of plastics in household appliances and composites (FRP) in aerospace and automotive industries.
- Outline the basics for the construction of electrochemical cells, batteries and fuel cells. Understand the mechanism of corrosion and how it can be prevented.
- *Express* the increases in demand as wide variety of advanced materials are introduced; which have excellent engineering properties.

Classify and discuss the materials used in major industries like steel industry, metallurgical industries and construction industries and electrical equipment manufacturing industries. Lubrication is also *summarized*.

- *Relate* the need of fuels as a source of energy to any industry, particularly industries like thermal power stations, steel industry, fertilizer industry etc., and hence introduced.
- *Explain* the importance and usage of water as basic material in almost all the industries; interpret drawbacks of steam boilers and also how portable water is supplied for drinking purposes.

UNIT I: POLYMER TECHNOLOGY

Polymerisation:- Introduction, methods of polymerization (emulsion and suspension), mechanical properties.

Plastics: Compounding, fabrication (compression, injection, blown film and extrusion), preparation, properties and applications (PVC, polycarbonates and Bakelite), mention some examples of plastic materials used in electronic gadgets, recycling of e-plastic waste (waste to wealth).

Elastomers:- Introduction, preparation, properties and applications (Buna S, thiokol and polyurethanes).

Composite materials: Fiber reinforced plastics, conducting polymers, biodegradable polymers, biopolymers, biomedical polymers.

Course Outcomes: At the end of this unit, the students will be able to

Analyze the different types of composite plastic materials and interpret the mechanism of conduction in conducting polymers.

UNIT II: ELECTROCHEMICAL CELLS AND CORROSION

Single electrode potential, electrochemical series and uses of series, standard hydrogen electrode, calomel electrode, construction of glass electrode, batteries (Dry cell, Li ion battery and zinc air cells), fuel cells (H₂-O₂, CH₃OH-O₂, phosphoric acid and molten carbonate).

Corrosion:-Definition, theories of corrosion (chemical and electrochemical), galvanic corrosion, differential aeration corrosion, stress corrosion, galvanic series, factors influencing rate of corrosion, corrosion control (proper designing and cathodic protection), Protective coatings (surface preparation, cathodic coatings, anodic coatings, electroplating and electroless plating [nickel]), Paints (constituents, functions and special paints).

8 hrs

10 hrs

DEPARTMENT OF CIVIL ENGINEERING

Course Outcomes: At the end of this unit, the students will be able to

Utilize the theory of construction of electrodes, batteries and fuel cells in redesigning new engineering products and categorize the reasons for corrosion and study methods to control corrosion.

UNIT III: CHEMISTRY OF MATERIALS

10 hrs

Part- A:

Nano materials:- Introduction, sol-gel method, characterization by (Brunauer Emmet Teller [BET]), (scanning electron microscopy [SEM]) and (transmission electron microscopy [TEM]) with example (TiO₂), applications of graphene and fullerenes, carbon nanotubes (types, preparation and applications)

Thermal analysis techniques: Instrumentation and applications of thermogravimetric analysis (TGA), differential thermal analysis (DTA), differential scanning calorimetry (DSC).

Part-B:

Refractories: - Definition, classification, properties (refractoriness, refractoriness under load, porosity and thermal spalling), failure of refractories.

Lubricants: - Definition, mechanism of lubricants, properties (definition and importance).

Cement: - Constituents, manufacturing, parameters to characterize the clinker formation: lime saturation factor (LSF), silica ratio (SR) and alumina ratio (AR), chemistry of setting and hardening, deterioration of cement.

Course Outcomes: At the end of this unit, the students will be able to

- *Synthesize* nanomaterials for modern advances of engineering technology.
- *Summarize* the techniques that detect and measure changes of state of reaction.
- *Illustrate* the commonly used industrial materials.

UNIT IV: FUELS

Introduction, calorific value, higher calorific value, lower calorific values, problems using Dulong's formula, proximate and ultimate analysis of coal sample and their significance, numerical problems, petroleum (refining-cracking), synthetic petrol (Fischer Tropsch and Bergius), petrol knocking, diesel knocking, octane and cetane ratings, anti-knocking agents, Introduction to alternative fuels (Biodiesel, ethanol, methanol, natural gas, liquefied petroleum gas, compressed natural gas), Flue gas analysis by Orsat apparatus, rocket fuels.

Course Outcomes: At the end of this unit, the students will be able to

- *Differentiate* petroleum, petrol, synthetic petrol and have knowledge how they are produced.
- *Study* alternate fuels and a*nalyse* flue gases.

UNIT V: WATER TECHNOLOGY

Hardness of water, determination of hardness by complexometric method, boiler troubles (priming and foaming, scale formation, boiler corrosion, caustic embrittlement), internal treatments, softening of hard water (zeolite process and related sums, ion exchange process), treatment of industrial waste water, potable water and its specifications, steps involved in purification of water, chlorination, break point chlorination-desalination (reverse osmosis and electro dialysis).

Course Outcomes: At the end of this unit, the students will be able to

• *Analyze* the suitable methods for purification and treatment of hard water and brackish water.

10 hrs

8 hrs

DEPARTMENT OF CIVIL ENGINEERING

Standard Books:

- 1. P.C. Jain and M. Jain "Engineering Chemistry", 15/e, Dhanpat Rai & Sons, Delhi, (Latest edition).
- 2. Shikha Agarwal, "Engineering Chemistry", Cambridge University Press, New Delhi, (2019).
- 3. S.S. Dara, "A Textbook of Engineering Chemistry", S.Chand & Co, (2010).
- 4. Shashi Chawla, "Engineering Chemistry", Dhanpat Rai Publicating Co. (Latest edition).

Reference:

- 1. K. Sesha Maheshwaramma and Mridula Chugh, "Engineering Chemistry", Pearson India Edn.
- 2. O.G. Palana, "Engineering Chemistry", Tata McGraw Hill Education Private Limited, (2009).
- 3. CNR Rao and JM Honig (Eds) "**Preparation and characterization of materials**" Academic press, New York (latest edition)
- 4. B. S. Murthy, P. Shankar and others, "**Textbook of Nanoscience and Nanotechnology**", University press (latest edition)

DEPARTMENT OF CIVIL ENGINEERING

I Year - II Semester		L T	Т	Р	С
		3	0	0	3
ENIGINEERING MECHANICS (ESC1201)					

Objectives: The students completing this course are expected to understand the concepts of forces and its resolution in different planes ,resultant of force system, Forces acting on a body, their free body diagrams using graphical methods. They are required to understand the concepts of centre of gravity and moments of inertia and their application, Analysis of frames and trusses, different types of motion, friction and application of work - energy method.

- The students are to be exposed to the concepts of force and friction, direction and its application.
- The students are to be exposed to application of free body diagrams. Solution to problems using graphical methods and law of triangle of forces.
- The students are to be exposed to concepts of centre of gravity
- The students are to be exposed to concepts of moment of inertia and polar moment of inertia including transfer methods and their applications.
- The students are to be exposed to motion in straight line and in curvilinear paths, its velocity and acceleration computation and methods of representing plane motion.
- The students are to be exposed to concepts of work, energy and particle motion

UNIT – I Introduction to Engg. Mechanics – Basic Concepts.

Systems of Forces: Coplanar Concurrent Forces – Components in Space – Resultant – Moment of Force and its Application – Couples and Resultant of Force Systems. Introduction, limiting friction and impending motion, coulomb's laws of dry friction, coefficient of friction, cone of friction

UNIT – II Equilibrium of Systems of Forces : Free Body Diagrams, Equations of Equilibrium of Coplanar Systems,

Spatial Systems for concurrent forces. LamisTheorm, Graphical method for the equilibrium of coplanar forces, Converse of the law of Triangle of forces, converse of the law of polygon of forces condition of equilibrium.

UNIT – III Centroid :Centroids of simple figures (from basic principles) – Centroids of Composite Figures

Centre of Gravity :Centre of gravity of simple body (from basis principles), centre of gravity of composite bodies, pappus theorem.

FRICTION

Types of friction – Limiting friction – Laws of Friction – static and Dynamic Frictions – Angle of Friction –Cone of limiting friction – Friction of wedge, block and Ladder

$\mathbf{UNIT} - \mathbf{IV}$

Area moments of Inertia :Definition – Polar Moment of Inertia, Transfer Theorem, Moments of Inertia of Composite Figures, Products of Inertia, Transfer Formula for Product of Inertia.

Mass Moment of Inertia :Moment of Inertia of Masses, Transfer Formula for Mass Moments of Inertia, mass moment of inertia of composite bodies.

DEPARTMENT OF CIVIL ENGINEERING

UNIT – V

Kinematics: Rectilinear and Curvelinear motions – Velocity and Acceleration – Motion of Rigid Body – Types and their Analysis in Planar Motion.

Introduction – Rectilinear motion – Motion with uniform and variable acceleration–Curvilinear motion–Componentsofmotion– Circular motion – Projectiles- Instantaneous centre

Kinetics:Kinetics of a particle – D'Alembert's principle – Motion in a curved path – work, energy and power. Principle of conservation of energy – Kinetics of a rigid body in translation, rotation – work done – Principle of work-energy – Impulse-momentum

TEXT BOOKS:

- 1. Engineering Mechanics S.Timoshenko&D.H.Young., 4thEdn, Mc Graw Hill publications.
- 2. Engineering Mechanics statics and dynamics R.C.Hibbeler, 11thEdn Pearson Publ.

REFERENCES:

- 1. Engineering Mechanics, statics and Dynamics, J.L.Meriam, 6thEdn Wiley India Pvt Ltd.
- 2. Engineering Mechanics: Statics and Dynamics 3rd edition, Andrew Pytel and JaanKiusalaas, Cengage Learning publishers.
- 3. Engineering Mechanics, dynamics, Bhavikatti S.S NewAge International Publishers.
- 4. Engineering Mechanics, statics and dynamics I.H. Shames, PearsonPublications
- 5. Mechanics For Engineers, statics -F.P.Beer&E.R.Johnston 5thEdn Mc Graw Hill Publ.
- 6. Mechanics For Engineers, dynamics F.P.Beer&E.R.Johnston 5thEdn McGraw Hill Publ.
- 7. Theory & Problems of engineering mechanics, statics & dynamics E.W.Nelson, C.L.Best& W.G. McLean, 5thEdn Schaum's outline series Mc Graw Hill Publ.
- 8. Engineering Mechanics, Fedinand . L. Singer, Harper Collins.
- 9. Engineering Mechanics statics and dynamics, A Nelson, Mc Graw Hill publications
- 10. Engineering Mechanics, Tayal. Umesh Publications.

DEPARTMENT OF CIVIL ENGINEERING

I Year - II Semester		L	L T	Р	С		
		3	0	0	3		
PROGRAMMING FOR PROBLEM SOLVING USING C (ES1202)							

COURSE OBJECTIVES:

The objectives of Programming for Problem Solving Using C are

- 1) To learn about the computer systems, computing environments, developing of a computer program and Structure of a C Program
- 2) To gain knowledge of the operators, selection, control statements and repetition in C
- To learn about the design concepts of arrays, strings, enumerated structure and union types. To learn about their usage.
- 4) To assimilate about pointers, dynamic memory allocation and know the significance of Preprocessor.
- 5) To assimilate about File I/O and significance of functions

UNIT I

Introduction to Computers: Creating and running Programs, Computer Numbering System, Storing Integers, Storing Real Numbers

Introduction to the C Language: Background, C Programs, Identifiers, Types, Variable, Constants, Input/output, Programming Examples, Scope, Storage Classes and Type Qualifiers.

Structure of a C Program: Expressions Precedence and Associativity, Side Effects, Evaluating Expressions, Type Conversion Statements, Simple Programs, Command Line Arguments.

UNIT II

Bitwise Operators: Exact Size Integer Types, Logical Bitwise Operators, Shift Operators.

Selection & Making Decisions: Logical Data and Operators, Two Way Selection, Multiway Selection, More Standard Functions

Repetition: Concept of Loop, Pretest and Post-test Loops, Initialization and Updating, Event and Counter Controlled Loops, Loops in C, Other Statements Related to Looping, Looping Applications, Programming Examples

UNIT III

Arrays: Concepts, Using Array in C, Array Application, Two Dimensional Arrays, Multidimensional Arrays, Programming Example – Calculate Averages

Strings: String Concepts, C String, String Input / Output Functions, Arrays of Strings, String Manipulation Functions String/ Data Conversion, A Programming Example – Morse Code

Enumerated, Structure, and Union: The Type Definition (Type def), Enumerated Types, Structure, Unions, and Programming Application

UNIT IV

Pointers: Introduction, Pointers to pointers, Compatibility, L value and R value **Pointer Applications:** Arrays, and Pointers, Pointer Arithmetic and Arrays, Memory Allocation Function, Array of Pointers, Programming Application **Processor Commands**: Processor Commands

DEPARTMENT OF CIVIL ENGINEERING

UNIT V

Functions: Designing, Structured Programs, Function in C, User Defined Functions, Inter-Function Communication, Standard Functions, Passing Array to Functions, Passing Pointers toFunctions, Recursion

Text Input / Output: Files, Streams, Standard Library Input / Output Functions, Formatting Input / Output Functions, Character Input / Output Functions

Binary Input / Output: Text versus Binary Streams, Standard Library, Functions for Files, Converting File Type.

TEXT BOOKS:

- 1. Programming for Problem Solving, Behrouz A. Forouzan, Richard F.Gilberg, CENGAGE
- 2. The C Programming Language, Brian W.Kernighan, Dennis M. Ritchie, 2e, Pearson

REFERENCES:

- 1. Computer Fundamentals and Programming, Sumithabha Das, Mc Graw Hill
- 2. Programming in C, Ashok N. Kamthane, AmitKamthane, Pearson
- 3. Computer Fundamentals and Programming in C, PradipDey, Manas Ghosh, OXFORD

COURSE OUTCOMES:

Upon the completion of the course the student will learn

- 1) To write algorithms and to draw flowcharts for solving problems
- 2) To convert flowcharts/algorithms to C Programs, compile and debug programs
- 3) To use different operators, data types and write programs that use two-way/ multi-way selection
- 4) To select the best loop construct for a given problem
- 5) To design and implement programs to analyze the different pointer applications
- 6) To decompose a problem into functions and to develop modular reusable code
- 7) To apply File I/O operations

DEPARTMENT OF CIVIL ENGINEERING

I Voor I Somoston	L	Τ	Р	С			
I Year - I Semester	3	0	0	3			
BUILDING MATERIALS AND CONCRETE TECHNOLOGY (ESC1203)							

Aim and Objective of this course

- 1. To introduce various building construction materials
- 2. To describe various properties of ingredients of concrete
- 3. To explain various properties and tests of fresh and Hardened Concrete

Course Outcomes (COs)

- 1. Know various engineering properties of building construction materials and suggest their suitability
- 2. Identify the functional role of ingredients of concrete and apply this knowledge to concrete mix design
- 3. Acquire and apply fundamental knowledge in the fresh and hardened properties of concrete

Syllabus

Unit - I (Stones, Bricks, Tiles, Wood and Paints)

Stones: Classification of Stones – Properties of stones in structural requirements

Bricks: Composition of good brick earth, Various methods of manufacturing of bricks

Tiles: Characteristics of good tile - Manufacturing methods, Types of tiles

Wood: Structure – Properties – Seasoning of timber – Classification of various types of woods used in buildings – Defects in timber

Paints: White washing and distempering, Constituents of paint – Types of paints – Painting of new and old wood – Varnish

Unit – II (Aggregates, Cement and Admixtures)

Aggregates: Classification of aggregate, Bond, Strength and other mechanical properties of aggregate, Physical properties of aggregate, bulking of sand, Deleterious substance in aggregate, Soundness of aggregate, Alkali-Aggregate reaction – Thermal properties, Sieve analysis – Fineness modulus – Grading curves – Grading of fine and coarse aggregates as per relevant IS code, Maximum aggregate size

Portland Cement: Chemical composition, Hydration, Structure of hydrated cement – Setting of cement, Fineness of cement, Tests for physical properties – Different grades of cements

Supplementary cementitious materials: Fly ash, GGBS, Silica fume, Rice husk ash, Calcinated ash (Basic properties and their contribution to concrete strength)

Admixtures: Mineral and Chemical admixtures

Unit - III (Fresh Concrete)

Manufacture of concrete – Mixing and vibration of concrete, Workability – Segregation and bleeding – Factors affecting workability, Measurement of workability by different tests, Effect of time and temperature on workability – Quality of mixing water, Ready mix concrete, Shotcrete

DEPARTMENT OF CIVIL ENGINEERING

Unit - IV (Hardened Concrete)

Water / Cement ratio – Abram's law, Gel space ratio, Nature of strength of concrete – Maturity concept, Strength in tension and compression – Properties of Hardened Concrete (Elasticity, Creep, Shrinkage, Poisson's ratio, Water absorption, Permeability, etc.), Relating between compression and tensile strength, Curing

Unit - V (Testing of Hardened Concrete)

Factors affecting properties of Hardened concrete, Compression tests, Tension tests, Flexure tests, Non-destructive testing methods – Codal provisions for NDT – Rebound hammer and UPV method

TEXT BOOKS

- 1. "Concrete Technology" by M. S. Shetty S. Chand & Co., 2004
- 2. "Engineering Materials" by Rangwala S C, (36th edition), Anand Charotar Publishing House
- 3. "Concrete Technology" by Shantha Kumar Oxford Publications

REFERENCE BOOKS

- 1. "Building Materials" by S. K. Duggal, New Age International Publications
- 2. "Building Materials" by P. C. Verghese, PHI learning (P) Ltd., 2009
- 3. "Properties of Concrete" by A. M. Neville Pearson 4th edition

DEPARTMENT OF CIVIL ENGINEERING

I Year - II Semester		L	L T	Р	С	
		0	0	3	1.5	
ENGINEERING CHEMISTRY LAB (BSC1203)						

Introduction to Chemistry laboratory – Molarity, normality, primary, secondary standard solutions, volumetric titrations, quantitative analysis

- 1. Determination of HCl using standard Na₂CO₃ solution.
- 2. Determination of alkalinity of a sample containing Na₂CO₃ and NaOH.
- 3. Determination of Mn^{+2} using standard oxalic acid solution.
- 4. Determination of ferrous iron using standard $K_2Cr_2O_7$ solution.
- 5. Determination of Cu^{+2} using standard hypo solution.
- 6. Determination of temporary and permanent hardness of water using standard EDTA solution.
- 7. Determination of Fe^{+3} by a colorimetric method.
- 8. Determination of the concentration of acetic acid using sodium hydroxide (pH-metry method).
- 9. Determination of iso-electric point of amino acids using pH-metry method/conductometric method.
- 10. Determination of the concentration of strong acid vs strong base (by conductometric method).
- 11. Determination of strong acid vs strong base (by potentiometric method).
- 12. Determination of Mg^{+2} present in an antacid.
- 13. Determination of CaCO₃ present in an egg shell.
- 14. Estimation of Vitamin C.
- 15. Determination of phosphoric content in soft drinks.
- 16. Adsorption of acetic acid by charcoal.
- 17. Preparation of nylon-6, 6 and Bakelite (demonstration only).

Of the above experiments at-least 10 assessment experiments should be completed in a semester.

Outcomes: The students entering into the professional course have practically very little exposure to lab classes. The experiments introduce volumetric analysis; redox titrations with different indicators; EDTA titrations; then they are exposed to a few instrumental methods of chemical analysis. Thus at the end of the lab course, the student is exposed to different methods of chemical analysis and use of some commonly employed instruments. They thus acquire some experimental skills.

Reference Books

1. A Textbook of Quantitative Analysis, Arthur J. Vogel.

DEPARTMENT OF CIVIL ENGINEERING

I Voor II Comostor		L	Т	P	С
I Year - II Semester		0	0	3	1.5
PROGRAMM	ING FOR PROBLEM SOLVING USING C LA	AB (ES	C1204)		

Course Objectives:

- 1) Apply the principles of C language in problem solving.
- 2) To design flowcharts, algorithms and knowing how to debug programs.
- 3) To design & develop of C programs using arrays, strings pointers & functions.
- 4) To review the file operations, preprocessor commands.

Exercise 1:

- 1. Write a C program to print a block F using hash (#), where the F has a height of six characters and width of five and four characters.
- 2. Write a C program to compute the perimeter and area of a rectangle with a height of 7 inches and width of 5 inches.
- 3. Write a C program to display multiple variables.

Exercise 2:

- 1. Write a C program to calculate the distance between the two points.
- 2. Write a C program that accepts 4 integers p, q, r, s from the user where r and s are positive and p is even. If q is greater than r and s is greater than p and if the sum of r and s is greater than the sum of p and q print "Correct values", otherwise print "Wrong values".

Exercise 3:

- 1. Write a C program to convert a string to a long integer.
- 2. Write a program in C which is a Menu-Driven Program to compute the area of the various geometrical shape.
- 3. Write a C program to calculate the factorial of a given number.

Exercise 4:

- 1. Write a program in C to display the n terms of even natural number and their sum.
- 2. Write a program in C to display the n terms of harmonic series and their sum. $1 + 1/2 + 1/3 + 1/4 + 1/5 \dots 1/n$ terms.
- 3. Write a C program to check whether a given number is an Armstrong number or not.

Exercise 5:

- 1. Write a program in C to print all unique elements in an array.
- 2. Write a program in C to separate odd and even integers in separate arrays.
- 3. Write a program in C to sort elements of array in ascending order.

Exercise 6:

- 1. Write a program in C for multiplication of two square Matrices.
- 2. Write a program in C to find transpose of a given matrix.

Exercise 7:

- 1. Write a program in C to search an element in a row wise and column wise sorted matrix.
- 2. Write a program in C to print individual characters of string in reverse order.

Exercise 8:

- 1. Write a program in C to compare two strings without using string library functions.
- 2. Write a program in C to copy one string to another string.

DEPARTMENT OF CIVIL ENGINEERING

Exercise 9:

- 1. Write a C Program to Store Information Using Structures with Dynamically Memory Allocation
- 2. Write a program in C to demonstrate how to handle the pointers in the program.

Exercise 10:

- 1. Write a program in C to demonstrate the use of & (address of) and *(value at address) operator.
- 2. Write a program in C to add two numbers using pointers.

Exercise 11:

- 1. Write a program in C to add numbers using call by reference.
- 2. Write a program in C to find the largest element using Dynamic Memory Allocation.

Exercise 12:

- 1. Write a program in C to swap elements using call by reference.
- 2. Write a program in C to count the number of vowels and consonants in a string using a pointer.

Exercise 13:

- 1. Write a program in C to show how a function returning pointer.
- 2. Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using malloc() function.

Exercise 14:

- 1. Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using calloc() function. Understand the difference between the above two programs
- 2. Write a program in C to convert decimal number to binary number using the function.

Exercise 15:

- 1. Write a program in C to check whether a number is a prime number or not using the function.
- 2. Write a program in C to get the largest element of an array using the function.

Exercise 16:

- 1. Write a program in C to append multiple lines at the end of a text file.
- 2. Write a program in C to copy a file in another name.
- 3. Write a program in C to remove a file from the disk.

Course Outcomes:

By the end of the Lab, the student

- 1) Gains Knowledge on various concepts of a C language.
- 2) Able to draw flowcharts and write algorithms.
- 3) Able design and development of C problem solving skills.
- 4) Able to design and develop modular programming skills.
- 5) Able to trace and debug a program

DEPARTMENT OF CIVIL ENGINEERING

I Year - II Semester		L	Т	Р	С
		0	0	3	1.5
BUILDING PLANNI	NG AND COMPUTER AIDED BUILDING DI	RAWI	NG (ESC12	205)

Aim and Objective of this course

To help the student to attain competency in preparation of engineering drawings as per principles of planning using a suitable CAD software through various teaching learning experiences:

Course Outcomes (COs)

- 1. Perform basic commands of any suitable CAD software to draw 2D drawings
- 2. Interpret the conventions, signs and symbols from a given drawing.
- 3. Prepare line plans of residential and public buildings using principles of planning.
- 4. Prepare submission and working drawing from the given requirement for Load Bearing and Framed structures

Major Equipment/ Instruments / System required

- 1. Computer with specification suitable for relevant CAD software with any suitable CAD Software
- 2. Laser Printer preferably for the output of A3 size.

Week 1, 2 and 3

Concepts to be studied

Introduction to CAD software: Basic commands of CAD to draw, modify 2D drawings

Building Byelaws: Introduction – Terminology – Objectives of building byelaws – Principles under laying building bye laws – Types of Buildings.

Regulations: Introduction – Development Control Rules of buildings – General Building Requirements as per NBC – Open space, Lighting and ventilation requirements – Floor area ratio & Floor space index.

Conventions, signs and symbols: Conventions as per IS 962-1989, signs and symbols for earthwork, brickwork, stonework, concrete, woodwork and glass used in civil engineering.

Construction, Graphical symbols for door and window, Abbreviations, symbols for sanitary and electrical installations.

Types of lines and scales: Types of lines- visible lines, centre line, hidden line, section line, dimension line, extension line, pointers, arrow head or dots. Appropriate size of lettering and numerals for Titles, sub titles, notes and dimensions.

Types of scale- Monumental, Intimate, criteria for Proper Selection of scale for various types of drawing.

Sizes of various standard papers/sheets.

Exercise 0

Prepare a given line drawing in minimum three layers using CAD software.

Exercise 1

Reading and interpreting readymade Architectural building drawing (To be procured from Architect, Planning Consultants, Planning Engineer)

DEPARTMENT OF CIVIL ENGINEERING

Week 4, 5 and 6

Concepts to be studied

Principles of building planning: Introduction to buildings, Classification of Buildings, Building Components, Orientation of building, Principles of architecture composition

Principles of planning of Residential and Public building, Orientation of building and Principles of architecture composition: Aspect, Prospect Orientation, Grouping, Privacy, Elegance, Flexibility. Roominess, Circulation, Furniture requirements, Sanitation, Ventilation, Illumination and Economy.

Space requirements and bye-laws: Space requirement and norms for minimum dimension of different units in the residential and public buildings as per IS 962-1989. Rules and bye-laws of sanctioning authorities for construction work. Plot area, built up area, super built-up area, plinth area, carpet area, floor area and FAR (Floor Area Ratio) / FSI.

Exercise 2

Line plans for residential building of minimum three rooms including w/c, bath and staircase as per principles of planning.

Exercise 3

Line plans for public building-school building, primary health centre, restaurant, bank, post office, hostel, Function Hail and Library.

Week 7, 8, 9 and 10

Concepts to be studied

Drawing of Load Bearing Structure: Developed plan, elevation, section, site plan, schedule of openings construction notes with specifications, area statement. Planning and design of staircase Rise and Tread for residential and public building (2 BHK Load bearing structure). Component parts of the given load bearing structure

Exercise 4

Draw developed plan, elevation, section, site plan from the given line plan for a load bearing residential building (2BHK) with stair case.

Exercise 5

Prepare submission drawing (including foundation plan) of the given load bearing residential building with stair case.

Week 11, 12, 13 and 14

Concepts to be studied

Drawing of Framed Structure: Developed plan, elevation, section, site plan, schedule of openings construction notes with specifications, area statement. Planning and design of staircase Rise and Tread for residential and public building (G+1, 2 BHK framed structure). Component parts of the given framed structure

Exercise 7

Draw developed plan, elevation, section, site plan from the given line plan for framed structure residential building including stair case (2BHK, G+1).

Exercise 8

Prepare submission drawing (including foundation plan) of the given framed structure residential building with stair case.

DEPARTMENT OF CIVIL ENGINEERING

Note: It is mandatory that student performs all 9 Exercises (from 0 to 8).

SUGGESTED STUDENT ACTIVITIES

- 1. Prepare report on Provisions given in National Building Code 2005.
- 2. Collect and study building Bye laws, rules and regulation for planning as per local competent authority.
- 3. Prepare list of the documents required for obtaining permission for construction of residential building/apartment from competent authority and write report.
- 4. Prepare list of the documents required for obtaining permission for construction of commercial building from competent authority and write report.
- 5. Prepare a model of a simple building using card board showing different components with suitable colour.

DEPARTMENT OF CIVIL ENGINEERING

I Year - II Semester		L	Т	Р	С
1 Tear - 11 Semester		2	0	0	0
	ENVIRONMENTAL SCIENCE (MC1201)				

Learning Objectives:

The objectives of the course are to impart:

- Overall understanding of the natural resources.
- Basic understanding of the ecosystem and its diversity.
- Acquaintance on various environmental challenges induced due to unplanned anthropogenic activities.
- An understanding of the environmental impact of developmental activities.
- Awareness on the social issues, environmental legislation and global treaties.

UNIT-I:

Multidisciplinary nature of Environmental Studies: Definition, Scope and Importance – Sustainability: Stockholm and Rio Summit–Global Environmental Challenges: Global warming and climate change, acid rains, ozone layer depletion, population growth and explosion, effects;. Role of information technology in environment and human health.

Ecosystems: Concept of an ecosystem. - Structure and function of an ecosystem; Producers, consumers and decomposers. - Energy flow in the ecosystem - Ecological succession. - Food chains, food webs and ecological pyramids; Introduction, types, characteristic features, structure and function of Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems.

UNIT-II:

Natural Resources: Natural resources and associated problems.

Forest resources: Use and over – exploitation, deforestation – Timber extraction – Mining, dams and other effects on forest and tribal people.

Water resources: Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems.

Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources.

Food resources: World food problems, changes caused by non-agriculture activities-effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity.

Energy resources: Growing energy needs, renewable and non-renewable energy sources use of alternate energy sources.

Land resources: Land as a resource, land degradation, Wasteland reclamation, man induced landslides, soil erosion and desertification; Role of an individual in conservation of natural resources; Equitable use of resources for sustainable lifestyles.

UNIT-III:

Biodiversity and its conservation: Definition: genetic, species and ecosystem diversityclassification - Value of biodiversity: consumptive use, productive use, social-Biodiversity at national and local levels. India as a mega-diversity nation - Hot-sports of biodiversity - Threats to biodiversity: habitat loss, man-wildlife conflicts. - Endangered and endemic species of India – Conservation of biodiversity: conservation of biodiversity.

DEPARTMENT OF CIVIL ENGINEERING

UNIT-IV:

Environmental Pollution: Definition, Cause, effects and control measures of Air pollution, Water pollution, Soil pollution, Noise pollution, Nuclear hazards. Role of an individual in prevention of pollution. - Pollution case studies, Sustainable Life Studies. Impact of Fire Crackers on Men and his well being.

Solid Waste Management: Sources, Classification, effects and control measures of urban and industrial solid wastes. Consumerism and waste products, Biomedical, Hazardous and e – waste management.

UNIT-V:

Social Issues and the Environment: Urban problems related to energy -Water conservation, rain water harvesting - Resettlement and rehabilitation of people; its problems and concerns. Environmental ethics: Issues and possible solutions. Environmental Protection Act -Air (Prevention and Control of Pollution) Act. –Water (Prevention and control of Pollution) Act -Wildlife Protection Act -Forest Conservation Act-Issues involved in enforcement of environmental legislation. -Public awareness.

Environmental Management: Impact Assessment and its significance various stages of EIA, preparation of EMP and EIS, Environmental audit. Ecotourism, Green Campus – Green business and Green politics.

The student should Visit an Industry / Ecosystem and submit a report individually on any issues related to Environmental Studies course and make a power point presentation.

Text Books:

- 1. Environmental Studies, K. V. S. G. Murali Krishna, VGS Publishers, Vijayawada
- 2. Environmental Studies, R. Rajagopalan, 2nd Edition, 2011, Oxford University Press.
- 3. Environmental Studies, P. N. Palanisamy, P. Manikandan, A. Geetha, and K. Manjula Rani; Pearson Education, Chennai

Reference:

- 1. Text Book of Environmental Studies, Deeshita Dave & P. UdayaBhaskar, Cengage Learning.
- 2. A Textbook of Environmental Studies, Shaashi Chawla, TMH, New Delhi
- 3. Environmental Studies, Benny Joseph, Tata McGraw Hill Co, New Delhi
- 4. Perspectives in Environment Studies, Anubha Kaushik, C P Kaushik, New Age International Publishers, 2014

COURSE STRUCTURE AND SYLLABUS

For

B.TECH – ELECTRICAL AND ELECTRONICS ENGINEERING

(Applicable for batches admitted from 2020-2021)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA-533003, Andhra Pradesh, India

I B.Tech – I SEMESTER

Sl. No	Course Components	Subjects	L	Т	Р	Credits
1	HSMC	Communicative English	3	0	0	3
2	BSC	Mathematics-I (Calculus and Differential Equations)	3	0	0	3
3	BSC	Mathematics-II (Linear Algebra and Numerical Methods)	3	0	0	3
4	ESC	Programming for Problem Solving Using C	3	0	0	3
5	ESC	Engineering Drawing & Design	1	0	4	3
6	HSMC	EnglishCommunicationSkillsLaboratory	0	0	3	1.5
7	BSC	Electrical Engineering Workshop	0	1	3	1.5
8	ESC	Programming for Problem Solving Using C Lab	0	0	3	1.5
		Total Credits				19.5

I B.Tech – II SEMESTER

Sl. No	Course Components	Subjects	L	Т	Р	Credits
1	BSC	Mathematics-III (Vector Calculus, Transforms and PDE)	3	0	0	3
2	BSC	Applied Physics	3	0	0	3
3	ESC	Data Structures Through C	3	0	0	3
4	ESC	Electrical Circuit Analysis-I	3	0	0	3
5	ESC	Basic Civil and Mechanical Engineering	3	0	0	3
6	BSC	Applied Physics Lab	0	0	3	1.5
7	ESC	Basic Civil and Mechanical Engineering Lab	0	0	3	1.5
8	ESC	Data Structures through C Lab	0	0	3	1.5
9	Mandatory Course	Constitution of India	2	0	0	0
		Total Credits				19.5

I Year I Semester		L	Т	Р	С
1 Year I Semester		3	0	0	3
	COMMUNICATIVE ENGLISH				

Introduction

The course is designed to train students in receptive (listening and reading) as well as productive and interactive (speaking and writing) skills by incorporating a comprehensive, coherent and integrated approach that improves the learners' ability to effectively use English language in academic/ workplace contexts. The shift is from *learning about the language* to *using the language*. On successful completion of the compulsory English language course/s in B.Tech., learners would be confident of appearing for international language qualification/proficiency tests such as IELTS, TOEFL, or BEC, besides being able to express themselves clearly in speech and competently handle the writing tasks and verbal ability component of campus placement tests. Activity based teaching-learning methods would be adopted to ensure that learners would engage in actual use of language both in the classroom and laboratory sessions.

Course Objectives

- Facilitate effective listening skills for better comprehension of academic lectures and English spoken by native speakers
- ➤ Focus on appropriate reading strategies for comprehension of various academic texts and authentic materials
- ➤ Help improve speaking skills through participation in activities such as role plays, discussions and structured talks/oral presentations
- ➤ Impart effective strategies for good writing and demonstrate the same in summarizing, writing well organized essays, record and report useful information
- Provide knowledge of grammatical structures and vocabulary and encourage their appropriate use in speech and writing

Learning Outcomes

At the end of the module, the learners will be able to

- understand social or transactional dialogues spoken by native speakers of English and identify the context, topic, and pieces of specific information
- > ask and answer general questions on familiar topics and introduce oneself/others
- employ suitable strategies for skimming and scanning to get the general idea of a text and locate specific information
- recognize paragraph structure and be able to match beginnings/endings/headings with paragraphs
- ➢ form sentences using proper grammatical structures and correct word forms

<u>Unit 1:</u>

Lesson-1: A Drawer full of happiness from "Infotech English", Maruthi Publications

Lesson-2: Deliverance by Premchand from "**The Individual Society**", Pearson Publications. (Non-detailed)

Listening: Listening to short audio texts and identifying the topic. Listening to prose, prose and conversation.

Speaking: Asking and answering general questions on familiar topics such as home, family, work, studies and interests. Self introductions and introducing others.

Reading: Skimming text to get the main idea. Scanning to look for specific pieces of information.

Reading for Writing: Paragraph writing (specific topics) using suitable cohesive devices; linkers, sign posts and transition signals; mechanics of writing - punctuation, capital letters.

Vocabulary: Technical vocabulary from across technical branches (20) GRE Vocabulary (20) (Antonyms and Synonyms, Word applications) Verbal reasoning and sequencing of words.

Grammar: Content words and function words; word forms: verbs, nouns, adjectives and adverbs; nouns: countables and uncountables; singular and plural basic sentence structures; simple question form - wh-questions; word order in sentences.

Pronunciation: Vowels, Consonants, Plural markers and their realizations

<u>Unit 2:</u>

Lesson-1: Nehru's letter to his daughter Indira on her birthday from "**Infotech English**", Maruthi Publications

Lesson-2: Bosom Friend by Hira Bansode from "The Individual Society", Pearson Publications.(Non-detailed)

Listening: Answering a series of questions about main idea and supporting ideas after listening to audio texts, both in speaking and writing.

Speaking: Discussion in pairs/ small groups on specific topics followed by short structured talks. Functional English: Greetings and leave takings. **Reading**: Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together.

Reading for Writing: Summarizing - identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions.

Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary Analogies (20 words) (Antonyms and Synonyms, Word applications)

Grammar: Use of articles and zero article; prepositions.

Pronunciation: Past tense markers, word stress-di-syllabic words

<u>Unit 3:</u>

Lesson-1: Stephen Hawking-Positivity 'Benchmark' from "Infotech English", Maruthi Publications

Lesson-2: Shakespeare's Sister by Virginia Woolf from "The Individual Society", Pearson Publications. (Non-detailed)

Listening: Listening for global comprehension and summarizing what is listened to, both in speaking and writing.

Speaking: Discussing specific topics in pairs or small groups and reporting what is discussed. Functional English: Complaining and Apologizing.

Reading: Reading a text in detail by making basic inferences - recognizing and interpreting specific context clues; strategies to use text clues for comprehension. Critical reading.

Reading for Writing: Summarizing - identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions. Letter writing-types, format and principles of letter writing. E-mail etiquette, Writing CV's.

Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Association, sequencing of words

Grammar: Verbs - tenses; subject-verb agreement; direct and indirect speech, reporting verbs for academic purposes.

Pronunciation: word stress-poly-syllabic words.

<u>Unit 4:</u>

Lesson-1: Liking a Tree, Unbowed: Wangari Maathai-biography from "Infotech English", Maruthi Publications

Lesson-2: Telephone Conversation-Wole Soyinka from "The Individual Society", Pearson Publications.(Non-detailed)

Listening: Making predictions while listening to conversations/ transactional dialogues without video (only audio); listening to audio-visual texts.

Speaking: Role plays for practice of conversational English in academic contexts (formal and informal) - asking for and giving information/directions. Functional English: Permissions, Requesting, Inviting.

Reading: Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicative process or display complicated data.

Reading for Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables. Writing SOP, writing for media.

Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters.

Grammar: Quantifying expressions - adjectives and adverbs; comparing and contrasting; degrees of comparison; use of antonyms

Pronunciation: Contrastive Stress

<u>Unit 5:</u>

Lesson-1: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications

Lesson-2: Still I Rise by Maya Angelou from "The Individual Society", Pearson Publications. (Non-detailed)

Listening: Identifying key terms, understanding concepts and interpreting the concepts both in speaking and writing.

Speaking: Formal oral presentations on topics from academic contexts - without the use of PPT slides. Functional English: Suggesting/Opinion giving.

Reading: Reading for comprehension. RAP Strategy Intensive reading and Extensive reading techniques.

Reading for Writing: Writing academic proposals- writing research articles: format and style.

Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, matching emotions.

Grammar: Editing short texts – identifying and correcting common errors in grammar and usage (articles, prepositions, tenses, subject verb agreement)

Pronunciation: Stress in compound words

Prescribed text books for theory for Semester-I:

1. "Infotech English", Maruthi Publications. (Detailed)

2."The Individual Society", Pearson Publications. (Non-detailed)

Prescribed text book for Laboratory for Semesters-I & II:

1. "Infotech English", Maruthi Publications. (With Compact Disc)

Reference Books:

- Bailey, Stephen. *Academic writing: A handbook for international students*. Routledge, 2014.
- Chase, Becky Tarver. *Pathways: Listening, Speaking and Critical Thinking*. Heinley ELT; 2nd Edition, 2018.
- Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.

I Year - I Semester	L	Т	Р	С
1 1 ear - 1 Semester	3	0	0	3
MAT	HEMATICS-I			
(Calculus and	Differential Equations)			

(Common to ALL branches of First Year B. Tech)

Course Objectives:

- To familiarize a variety of well-known sequences and series, with a developing intuition about the behavior of new ones.
- To enlighten the learners in the concept of differential equations and multivariable calculus.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real-world problems and their applications.

Course Outcomes: At the end of the course, the student will be able to

- utilize mean value theorems to real life problems (L3)
- solve the differential equations related to various engineering fields (L3)
- familiarize with functions of several variables which is useful in optimization (L3)
- apply double integration techniques in evaluating areas bounded by region (L3)
- students will also learn important tools of calculus in higher dimensions. Students will become familiar with 2- dimensional and 3-dimensional coordinate systems (L5)

UNIT – I: Sequences, Series and Mean value theorems:

Sequences and Series: Convergences and divergence – Ratio test – Comparison tests – Integral test – Cauchy's root test – Alternate series– Leibnitz's rule.

Mean Value Theorems (without proofs): Rolle's Theorem – Lagrange's mean value theorem – Cauchy's mean value theorem – Taylor's and Maclaurin's theorems with remainders, Problems and applications on the above theorem.

UNIT – II: Differential equations of first order and first degree: (10hrs)

Linear differential equations- Bernoulli's equations -Exact equations and equations reducible to exact form.

Applications: Newton's Law of cooling– Law of natural growth and decay– Orthogonal trajectories– Electrical circuits.

(10hrs)

UNIT – III: Linear differential equations of higher order:

Homogeneous and Non-homogeneous differential equations of higher order with constant coefficients – with non-homogeneous term of the type e^{ax} , sin ax, cos ax, polynomials in x^n , $e^{ax}V(x)$ and $x^nV(x)$ – Method of Variation of parameters, Cauchy and Legendre's linear equations.

Applications: LCR circuit, Simple Harmonic motion.

UNIT – IV: Partial differentiation:

Introduction – Homogeneous function – Euler's theorem– Total derivative– Chain rule– Jacobian – Functional dependence – Taylor's and MacLaurin's series expansion of functions of two variables. Applications: Maxima and Minima of functions of two variables without constraints and Lagrange's method.

UNIT – V: Multiple integrals:

Double and Triple integrals – Change of order of integration in double integrals – Change of variables to polar, cylindrical and spherical coordinates.

Applications: Finding Areas and Volumes.

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 44th Edition, Khanna Publishers, 2018
- 2. B. V. Ramana, Higher Engineering Mathematics, 6th Edition, Tata Mc. Graw Hill Education, 2007.

Reference Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India, 2011.
- 2. Joel Hass, Christopher Heil and Maurice D. Weir, Thomas calculus, 14thEdition, Pearson, 2017.
- 3. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 2013.
- 4. Srimantha Pal, S. C. Bhunia, Engineering Mathematics, Oxford University Press, 2015.

(10hrs)

(10hrs)

(8 hrs)

I Year I Semester		L	Т	Р	С			
1 Year I Semester		3	0	0	3			
MATHEMATICS-II (Linear Algebra and Numerical Methods)								
(Common to ALL branches of First Year B.Tech.)								

Course Objectives:

- To instruct the concept of Matrices in solving linear algebraic equations
- To elucidate the different numerical methods to solve nonlinear algebraic equations
- To disseminate the use of different numerical techniques for carrying out numerical integration.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real-world problems and their applications.

Course Outcomes: At the end of the course, the student will be able to

- develop the use of matrix algebra techniques that is needed by engineers for practical applications (L6)
- solve system of linear algebraic equations using Gauss elimination, Gauss Jordan, Gauss Seidel (L3)
- evaluate the approximate roots of polynomial and transcendental equations by different algorithms (L5)
- apply Newton's forward & backward interpolation and Lagrange's formulae for equal and unequal intervals (L3)
- apply numerical integral techniques to different Engineering problems (L3)
- apply different algorithms for approximating the solutions of ordinary differential equations with initial conditions to its analytical computations (L3)

UNIT – I: Solving systems of linear equations, Eigen values and Eigen vectors: (10hrs)

Rank of a matrix by echelon form and normal form – Solving system of homogeneous and nonhomogeneous linear equations – Gauss Elimination method – Eigen values and Eigen vectors and properties (article-2.14 in text book-1).

Unit – II: Cayley–Hamilton theorem and Quadratic forms:

Cayley-Hamilton theorem (without proof) – Applications – Finding the inverse and power of a matrix by Cayley-Hamilton theorem – Reduction to Diagonal form – Quadratic forms and nature of the quadratic forms – Reduction of quadratic form to canonical forms by orthogonal transformation. Singular values of a matrix, singular value decomposition (text book-3).

UNIT – III: Iterative methods:

Introduction– Bisection method–Secant method – Method of false position– Iteration method – Newton-Raphson method (One variable and simultaneous equations) – Jacobi and Gauss-Seidel methods for solving system of equations numerically.

(8 hrs)

(10hrs)

UNIT – IV: Interpolation:

(10 hrs)

Introduction– Errors in polynomial interpolation – Finite differences– Forward differences– Backward differences – Central differences – Relations between operators – Newton's forward and backward formulae for interpolation – Interpolation with unequal intervals – Lagrange's interpolation formula– Newton's divide difference formula.

UNIT – V: Numerical differentiation and integration, Solution of ordinary differential equations with initial conditions: (10 hrs)

Numerical differentiation using interpolating polynomial – Trapezoidal rule– Simpson's 1/3rd and 3/8th rule– Solution of initial value problems by Taylor's series– Picard's method of successive approximations– Euler's method – Runge-Kutta method (second and fourth order).

Text Books:

- **1.** B. S. Grewal, Higher Engineering Mathematics, 44th Edition, Khanna Publishers, 2018
- 2. B. V. Ramana, Higher Engineering Mathematics, 6th Edition, Tata McGraw Hill Education, 2007
- 3. David Poole, Linear Algebra- A modern introduction, 4th Edition, Cengage, 2015

Reference Books:

- 1. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering and Science, Tata McGraw Hill Education, 4th Edition, 2018
- 2. M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications, 3rd Edition, 2020.
- 3. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014.

I Year I Semester		L	Т	Р	С
I Year I Semester		3	0	0	3
PRO	GRAMMING FOR PROBLEM SOLVING	USINC	G C		

Course Objectives:

- To learn about the computer systems, computing environments, developing of a computer program and Structure of a C Program
- To gain knowledge of the operators, selection, control statements and repetition in C
- To learn about the design concepts of arrays, strings, enumerated structure and union types. To learn about their usage.
- To assimilate about pointers, dynamic memory allocation and know the significance of Preprocessor.
- To assimilate about File, I/O and significance of functions

UNIT I

Introduction to Computers: Creating and running Programs, Computer Numbering System, Storing Integers, Storing Real Numbers

Introduction to the C Language: Background, C Programs, Identifiers, Types, Variable, Constants, Input/output, Programming Examples, Scope, Storage Classes and Type Qualifiers. **Structure of a C Program:** Expressions Precedence and Associativity, Side Effects, Evaluating Expressions, Type Conversion Statements, Simple Programs, Command Line Arguments.

UNIT II

Bitwise Operators: Exact Size Integer Types, Logical Bitwise Operators, Shift Operators.

Selection & Making Decisions: Logical Data and Operators, Two Way Selection, Multi-way Selection, More Standard Functions

Repetition: Concept of Loop, Pretest and Post-test Loops, Initialization and Updating, Event and Counter Controlled Loops, Loops in C, Other Statements Related to Looping, Looping Applications, Programming Examples

UNIT III

Arrays: Concepts, Using Array in C, Array Application, Two Dimensional Arrays, Multidimensional Arrays, Programming Example – Calculate Averages

Strings: String Concepts, C String, String Input / Output Functions, Arrays of Strings, String Manipulation Functions String/ Data Conversion, A Programming Example – Morse Code **Enumerated, Structure, and Union:** The Type Definition (Type def), Enumerated Types, Structure, Unions, and Programming Application

UNIT IV

Pointers: Introduction, Pointers to pointers, Compatibility, L value and R value **Pointer Applications:** Arrays, and Pointers, Pointer Arithmetic and Arrays, Memory Allocation Function, Array of Pointers, Programming Application **Processor Commands**: Processor Commands

UNIT V

Functions: Designing, Structured Programs, Function in C, User Defined Functions, Inter-Function Communication, Standard Functions, Passing Array to Functions, Passing Pointers to Functions, Recursion

Text Input / Output: Files, Streams, Standard Library Input / Output Functions, Formatting Input / Output Functions, Character Input / Output Functions

Binary Input / **Output:** Text versus Binary Streams, Standard Library, Functions for Files, Converting File Type.

Course Outcomes:

After the completion of the course the student should be able:

- To write algorithms and to draw flowcharts for solving problems
- To convert flowcharts/algorithms to C Programs, compile and debug programs
- To use different operators, data types and write programs that use two-way/ multi-way selection
- To select the best loop construct for a given problem
- To design and implement programs to analyze the different pointer applications
- To decompose a problem into functions and to develop modular reusable code
- To apply file I/O operations

Text Books:

- 1. Programming for Problem Solving, Behrouz A. Forouzan, Richard F.Gilberg, 1st edition, Cengage, 2019.
- 2. The C Programming Language, Brian W.Kernighan, Dennis M. Ritchie, 2 edition, Pearson, 2015.

References:

- 1. Computer Fundamentals and Programming, Sumithabha Das, 1st edition, McGraw Hill, 2018.
- 2. Programming in C, Ashok N. Kamthane, Amit Kamthane, 3rd edition, Pearson, 2015.
- 3. Computer Fundamentals and Programming in C, PradipDey, ManasGhosh, 2nd edition, Oxford, 2013.

		L	Т	Р	С
I Year I Semester		1	0	4	3
	ENGINEERING DRAWING & DESIG	N	•		

Course Objective: Engineering drawing being the principal method of communication for engineers, the objective is to introduce the students, the techniques of constructing the various types of polygons, curves and scales. The objective is also to visualize and represent the 3D objects in 2D planes with proper dimensioning, scaling etc.

Unit I

Objective: To introduce the students to use drawing instruments and to draw polygons, Engg. Curves.

Polygons: Constructing regular polygons by general methods, inscribing and describing polygons on circles.

Curves: Parabola, Ellipse and Hyperbola by general and special methods, cycloids, involutes, tangents and normal for the curves.

Scales: Plain scales, diagonal scales and vernier scales

Unit II

Objective: To introduce the students to use orthographic projections, projections of points & simple lines. To make the students draw the projections of the lines inclined to both the planes.

Orthographic Projections: Reference plane, importance of reference lines, projections of points in various quadrants, projections of lines, line parallel to both the planes, line parallel to one plane and inclined to other plane.

Projections of straight lines inclined to both the planes, determination of true lengths, angle of inclination and traces.

Unit III

Objective: The objective is to make the students draw the projections of the plane inclined to both the planes.

Projections of planes: regular planes perpendicular/parallel to one reference plane and inclined to the other reference plane; inclined to both the reference planes.

Unit IV

Objective: The objective is to make the students draw the projections of the various types of solids in different positions inclined to one of the planes.

Projections of Solids – Prisms, Pyramids, Cones and Cylinders with the axis inclined to both the planes.

Unit V

Objective: The objective is to represent the object in 3D view through isometric views. The student will be able to represent and convert the isometric view to orthographic view and vice versa.

Conversion of isometric views to orthographic views; Conversion of orthographic views to isometric views.

Computer Aided Design, drawing practice using Auto CAD, creating 2D&3D drawings of objects using Auto CAD

Note: In the End Examination there will be no question from CAD.

TEXT BOOKS:

- 1. Engineering Drawing by N.D. Butt, 53rd edition, Charotar Publications, 2014.
- 2. Engineering Drawing by Agarwal & Agarwal,3rd edition, Tata McGraw Hill Publishers, 2019.

REFERENCE BOOKS:

- 1. Engineering Drawing by K. L. Narayana & P. Kannaiah, Scitech Publishers, 2011.
- 2. Engineering Graphics for Degree by K.C. John, 1st edition, PHI Publishers, 2009.
- 3. Engineering Graphics by PI Varghese, Mc Graw Hill Publishers, 2012.
- 4. Engineering Drawing + AutoCAD K Venugopal, V. Prabhu Raja, 5th edition, New Age, 2011.

Course Outcome: The student will learn how to visualize 2D & 3D objects.

I Year I Semester		L	Т	Р	С				
1 Year I Semester		0	0	3	1.5				
ENG	0 0 3 1.5 ENGLISH COMMUNICATION SKILLS LABORATORY								

TOPICS

UNIT I:

Vowels, Consonants, Pronunciation, Phonetic Transcription, Common Errors in Pronunciation,

UNIT II:

Word stress-di-syllabic words, poly-syllabic words, weak and strong forms, contrastive stress (Homographs)

UNIT III:

Stress in compound words, rhythm, intonation, accent neutralisation.

UNIT IV:

Listening to short audio texts and identifying the context and specific pieces of information to answer a series of questions in speaking.

UNIT V:

Newspapers reading; Understanding and identifying key terms and structures useful for writing reports.

Prescribed text book: "Infotech English", Maruthi Publications.

References:

- 1. Exercises in Spoken English Part 1,2,3,4, OUP and CIEFL.
- 2. English Pronunciation in use- Mark Hancock, Cambridge University Press.
- 3. English Phonetics and Phonology-Peter Roach, Cambridge University Press.
- 4. English Pronunciation in use- Mark Hewings, Cambridge University Press.
- 5. English Pronunciation Dictionary- Daniel Jones, Cambridge University Press.
- 6. English Phonetics for Indian Students- P. Bala Subramanian, Mac Millan Publications.

I Year I Semester		L	Т	Р	С
		0	1	3	1.5
	ELECTRICAL ENGINEERING WORKS	HOP			

Course Objectives:

- To demonstrate the usage of measuring equipment
- To train the students in setting up simple wiring circuits
- To impart methods in electrical machine wiring

Any 10 of the following experiments are to be conducted

List of Experiments:

- 1. Study of various electrical tools and symbols.
- 2. Study various types of electrical cables/wires, switches, fuses, fuse carriers, MCB, ELCB, RCCB and MCCB with their specifications and usage.
- 3. Soldering and de-soldering practice.
- 4. Identification of various types of resistors and capacitors and understand the usage digital multi-meter.
- 5. Identification of various semiconductor devices.
- 6. Study of Moving Iron, Moving Coil, Electrodynamic and Induction type meters.
- 7. Fluorescent lamp wiring.
- 8. Wiring of lighting circuit using two-way control (stair case wiring)
- 9. Go down wiring/ Tunnel wiring
- 10. Hospital wiring.
- 11. Measurement of voltage, current, power in DC circuit.
- 12. Wiring of power distribution arrangement using single phase MCB distribution board with ELCB, main switch and energy meter for calculating Power and Power Factor.
- 13. Measurement of earth resistance.
- 14. Wiring of backup power supply for domestic Installations including inverter, battery and load.
- 15. Troubleshooting of domestic electrical equipment's (tube light and fan).
- 16. Understand the usage of CRO, function generator. & Regulated power supply and Measurement of ac signal parameters using CRO.
- 17. Assembling electronic components on bread board.
- 18. Obtain V-I characteristics of Light Emitting Diode.

Course Outcomes:

After the completion of the course the student should be able to:

- Explain the limitations, tolerances, safety aspects of electrical systems and wiring.
- Select wires/cables and other accessories used in different types of wiring.
- Make simple lighting and power circuits.
- Measure current, voltage and power in a circuit.

I Voor I Somostor		L	Т	Р	С			
I Year I Semester		0	0	3	1.5			
PROGRAMMING FOR PROBLEM SOLVING USING C LAB (ES1202)								

Course Objectives:

- Apply the principles of C language in problem solving.
- To design flowcharts, algorithms and knowing how to debug programs.
- To design & develop of C programs using arrays, strings pointers & functions.
- To review the file operations, preprocessor commands.

Exercise 1:

- Write a C program to print a block F using hash (#), where the F has a height of six characters and width of five and four characters.
- Write a C program to compute the perimeter and area of a rectangle with a height of 7 inches and width of 5 inches.
- Write a C program to display multiple variables.

Exercise 2:

- Write a C program to calculate the distance between the two points.
- Write a C program that accepts 4 integers p, q, r, s from the user where r and s are positive and p is even. If q is greater than r and s is greater than p and if the sum of r and s is greater than the sum of p and q print "Correct values", otherwise print "Wrong values".

Exercise 3:

- Write a C program to convert a string to a long integer.
- Write a program in C which is a Menu-Driven Program to compute the area of the various geometrical shape.
- Write a C program to calculate the factorial of a given number.

Exercise 4:

- Write a program in C to display the n terms of even natural number and their sum.
- Write a program in C to display the n terms of harmonic series and their sum. $1 + 1/2 + 1/3 + 1/4 + 1/5 \dots 1/n$ terms.
- Write a C program to check whether a given number is an Armstrong number or not.

Exercise 5:

- Write a program in C to print all unique elements in an array.
- Write a program in C to separate odd and even integers in separate arrays.
- Write a program in C to sort elements of array in ascending order.

Exercise 6:

- Write a program in C for multiplication of two square Matrices.
- Write a program in C to find transpose of a given matrix.

Exercise 7:

- Write a program in C to search an element in a row wise and column wise sorted matrix.
- Write a program in C to print individual characters of string in reverse order.

Exercise 8:

- Write a program in C to compare two strings without using string library functions.
- Write a program in C to copy one string to another string.

Exercise 9:

- Write a C Program to Store Information Using Structures with Dynamically Memory Allocation
- Write a program in C to demonstrate how to handle the pointers in the program.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Exercise 10:

- Write a program in C to demonstrate the use of & (address of) and *(value at address) operator.
- Write a program in C to add two numbers using pointers.

Exercise 11:

- Write a program in C to add numbers using call by reference.
- Write a program in C to find the largest element using Dynamic Memory Allocation.

Exercise 12:

- Write a program in C to swap elements using call by reference.
- Write a program in C to count the number of vowels and consonants in a string using a pointer.

Exercise 13:

- Write a program in C to show how a function returning pointer.
- Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using malloc() function.

Exercise 14:

- Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using calloc() function. Understand the difference between the above two programs
- Write a program in C to convert decimal number to binary number using the function.

Exercise 15:

- Write a program in C to check whether a number is a prime number or not using the function.
- Write a program in C to get the largest element of an array using the function.

Exercise 16:

- Write a program in C to append multiple lines at the end of a text file.
- Write a program in C to copy a file in another name.
- Write a program in C to remove a file from the disk.

Course Outcomes:

After the completion of the course the student should be able to:

- Gains Knowledge on various concepts of a C language.
- Draw flowcharts and write algorithms.
- Design and development of C problem solving skills.
- Design and develop modular programming skills.
- Trace and debug a program

COURSE STRUCTURE AND SYLLABUS

For

B.TECH – ELECTRICAL AND ELECTRONICS ENGINEERING

(Applicable for batches admitted from 2020-2021)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA-533003, Andhra Pradesh, India

I B.Tech – I SEMESTER

Sl. No	Course Components	Subjects	L	Т	Р	Credits
1	HSMC	Communicative English	3	0	0	3
2	BSC	Mathematics-I (Calculus and Differential Equations)	3	0	0	3
3	BSC	Mathematics-II (Linear Algebra and Numerical Methods)	3	0	0	3
4	ESC	Programming for Problem Solving Using C	3	0	0	3
5	ESC	Engineering Drawing & Design	1	0	4	3
6	HSMC	EnglishCommunicationSkillsLaboratory	0	0	3	1.5
7	BSC	Electrical Engineering Workshop	0	1	3	1.5
8	ESC	Programming for Problem Solving Using C Lab	0	0	3	1.5
		Total Credits				19.5

I B.Tech – II SEMESTER

Sl. No	Course Components	Subjects	L	Т	Р	Credits
1	BSC	Mathematics-III (Vector Calculus, Transforms and PDE)	3	0	0	3
2	BSC	Applied Physics	3	0	0	3
3	ESC	Data Structures Through C	3	0	0	3
4	ESC	Electrical Circuit Analysis-I	3	0	0	3
5	ESC	Basic Civil and Mechanical Engineering	3	0	0	3
6	BSC	Applied Physics Lab	0	0	3	1.5
7	ESC	Basic Civil and Mechanical Engineering Lab	0	0	3	1.5
8	ESC	Data Structures through C Lab	0	0	3	1.5
9	Mandatory Course	Constitution of India	2	0	0	0
		Total Credits				19.5

		L	Т	Р	С		
I Year II Semester		3	0	0	3		
MATHEMATICS-III (Vector Calculus, Transforms and PDE)							

Course Objectives:

- To familiarize the techniques in partial differential equations
- To furnish the learners with basic concepts and techniques at plus two level to lead them into advanced level by handling various real-world applications.

Course Outcomes: At the end of the course, the student will be able to

- interpret the physical meaning of different operators such as gradient, curl and divergence (L5)
- estimate the work done against a field, circulation and flux using vector calculus (L5)
- apply the Laplace transform for solving differential equations (L3)
- find or compute the Fourier series of periodic signals (L3) •
- know and be able to apply integral expressions for the forwards and inverse Fourier • transform to a range of non-periodic waveforms (L3)
- identify solution methods for partial differential equations that model physical processes(L3) •

UNIT –I: Vector calculus:

Vector Differentiation: Gradient-Directional derivative - Divergence-Curl-Scalar Potential

Vector Integration: Line integral - Work done - Area- Surface and volume integrals - Vector integral theorems: Greens, Stokes and Gauss Divergence theorems (without proof) and problems on above theorems.

UNIT –II: Laplace Transforms:

Laplace transforms - Definition and Laplace transforms of some certain functions- Shifting theorems - Transforms of derivatives and integrals - Unit step function -Dirac's delta function Periodic function - Inverse Laplace transforms- Convolution theorem (without proof).

Applications: Solving ordinary differential equations (initial value problems) using Laplace transforms.

UNIT –III: Fourier series and Fourier Transforms:

Fourier Series: Introduction- Periodic functions - Fourier series of periodic function - Dirichlet's conditions – Even and odd functions – Change of interval– Half-range sine and cosine series.

Fourier Transforms: Fourier integral theorem (without proof) - Fourier sine and cosine integrals -Sine and cosine transforms - Properties (article-22.5 in text book-1)- inverse transforms -Convolution theorem (without proof) – Finite Fourier transforms.

UNIT -IV: PDE of first order:

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions - Solutions of first order linear (Lagrange) equation and nonlinear (standard types) equations.

(10 hrs)

(**10 hrs**)

(8 hrs)

(10 hrs)

UNIT – V: Second order PDE and Applications:

(10 hrs)

Second order PDE: Solutions of linear partial differential equations with constant coefficients –non-homogeneous term of the type e^{ax+by} , sin(ax + by), cos(ax + by), $x^m y^n$.

Applications of PDE: Method of separation of Variables– Solution of One-dimensional Wave, Heat and two-dimensional Laplace equation.

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 44th Edition, Khanna Publishers, 2018.
- 2. B. V. Ramana, Higher Engineering Mathematics, 2007 Edition, Tata McGraw Hill Education.

Reference Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India. 2015.
- 2. Dean. G. Duffy, Advanced Engineering Mathematics with MATLAB, 3rd Edition, CRC Press, 2010.
- 3. Peter O' Neil, Advanced Engineering Mathematics, 7th edition, Cengage, 2011..
- 4. Srimantha Pal, S C Bhunia, Engineering Mathematics, Oxford University Press, 2015.

I Year II Semester		L	Т	Р	С		
		3	0	0	3		
APPLIED PHYSICS							

(For All Circuital Branches like ECE, EEE, CSE etc)

Unit-I: Wave Optics

12hrs Interference: Principle of superposition --Interference of light - Interference in thin films (Reflection Geometry) & applications - Colors in thin films- Newton's Rings-Determination of wavelength and refractive index.

Diffraction: Introduction - Fresnel and Fraunhofer diffraction - Fraunhofer diffraction due to single slit, double slit - N-slits (Qualitative) - Diffraction Grating - Dispersive power and resolving power of Grating(Qualitative).

Polarization: Introduction-Types of polarization - Polarization by reflection, refraction and Double refraction - Nicol's Prism -Half wave and Quarter wave plates.

Unit Outcomes: The students will be able to

- **Explain** the need of coherent sources and the conditions for sustained interference (L2)
- Identify engineering applications of interference (L3)
- > Analyze the differences between interference and diffraction with applications (L4)
- > **Illustrate** the concept of polarization of light and its applications (L2)
- Classify ordinary polarized light and extraordinary polarized light (L2)

Unit-II: Lasers and Fiber optics

8hrs

Lasers: Introduction - Characteristics of laser - Spontaneous and Stimulated emissions of radiation - Einstein's coefficients - Population inversion - Lasing action - Pumping mechanisms - Ruby laser - He-Ne laser - Applications of lasers.

Fiber optics: Introduction – Principle of optical fiber- Acceptance Angle - Numerical Aperture -Classification of optical fibers based on refractive index profile and modes - Propagation of electromagnetic wave through optical fibers - Applications.

Unit Outcomes: The students will be able to

- > **Understand** the basic concepts of LASER light Sources (L2)
- > Apply the concepts to learn the types of lasers (L3)
- > **Identifies** the Engineering applications of lasers (L2)
- **Explain** the working principle of optical fibers (L2)
- Classify optical fibers based on refractive index profile and mode of propagation (L2)
- > **Identify** the applications of optical fibers in various fields (L2)

 Unit III: Quantum Mechanics, Free Electron Theory and Band theory
 10hrs

 Quantum Mechanics: Dual nature of matter – Heisenberg's Uncertainty Principle –
 Significance and properties of wave function – Schrodinger's time independent and dependent wave equations– Particle in a one-dimensional infinite potential well.

Free Electron Theory: Classical free electron theory (Qualitative with discussion of merits and demerits) – Quantum free electron theory– Equation for electrical conductivity based on quantum free electron theory- Fermi-Dirac distribution- Density of states (3D) - Fermi energy.

Band theory of Solids: Bloch's Theorem (Qualitative) - Kronig - Penney model (Qualitative)- E vs K diagram - V vs K diagram - effective mass of electron – Classification of crystalline solids–concept of hole.

Unit Outcomes:

The students will be able to

- **Explain** the concept of dual nature of matter (L2)
- > Understand the significance of wave function (L2)
- > Interpret the concepts of classical and quantum free electron theories (L2)
- **Explain** the importance of K-P model
- Classify the materials based on band theory (L2)
- > Apply the concept of effective mass of electron (L3)

Unit-IV: Dielectric and Magnetic Materials

Dielectric Materials: Introduction - Dielectric polarization - Dielectric polarizability, Susceptibility and Dielectric constant - Types of polarizations- Electronic (Quantitative), Ionic (Quantitative) and Orientation polarizations (Qualitative) - Lorentz internal field-Clausius- Mossotti equation- Piezoelectricity.

Magnetic Materials: Introduction - Magnetic dipole moment - Magnetization-Magnetic susceptibility and permeability - Origin of permanent magnetic moment - Classification of magnetic materials: Dia, para, Ferro, antiferro & Ferri magnetic materials - Domain concept for Ferromagnetism & Domain walls (Qualitative) - Hysteresis - soft and hard magnetic materials- Eddy currents- Engineering applications.

Unit Outcomes: The students will be able to

- **Explain** the concept of dielectric constant and polarization in dielectric materials (L2)
- Summarize various types of polarization of dielectrics (L2)
- Interpret Lorentz field and Claussius-Mosotti relation in dielectrics(L2)
- Classify the magnetic materials based on susceptibility and their temperature dependence (L2)
- **Explain** the applications of dielectric and magnetic materials (L2)
- > Apply the concept of magnetism to magnetic data storage devices (L3)

8hrs

Unit – V: Semiconductors and Superconductors 10hrs

Semiconductors: Introduction- Intrinsic semiconductors – Density of charge carriers – Electrical conductivity – Fermi level – extrinsic semiconductors – density of charge carriers – dependence of Fermi energy on carrier concentration and temperature - Drift and diffusion currents – Einstein's equation- Hall effect – Hall coefficient –Applications of Hall

Superconductors: Introduction – Properties of superconductors – Meissner effect – Type I and Type II superconductors – BCS theory (Qualitative) – Josephson effects (AC and DC) – SQUIDs High T_c superconductors – Applications of superconductors.

Unit Outcomes: The students will be able to

- Classify the energy bands of semiconductors (L2)
- > **Interpret** the direct and indirect band gap semiconductors (L2)
- > **Identify** the type of semiconductor using Hall effect (L2)
- > **Identify** applications of semiconductors in electronic devices (L2)
- Classify superconductors based on Meissner's effect (L2)
- **Explain** Meissner's effect, BCS theory & Josephson effect in superconductors (L2)

Text books:

effect.

- 1. M. N. Avadhanulu, P.G.Kshirsagar & TVS Arun Murthy" A Text book of Engineering Physics"- S.Chand Publications, 11th Edition 2019.
- 2. Engineering Physics" by D.K.Bhattacharya and Poonam Tandon, 1st edition, Oxford press, 2015.
- 3. Applied Physics by P.K.Palanisamy 3rd edition, SciTech publications, 2013.

Reference Books:

- 1. Fundamentals of Physics Halliday, Resnick and Walker,10th edition, John Wiley &Sons, 2013.
- 2. Engineering Physics by M.R.Srinivasan, New Age international publishers, 2009.
- 3. Shatendra Sharma, Jyotsna Sharma, "Engineering Physics", 1st edition, Pearson Education, 2018.
- 4. Engineering Physics Sanjay D. Jain, D. Sahasrabudhe and Girish, 1st edition, University Press, 2010.
- Semiconductor physics and devices- Basic principle Donald A, Neamen, 3rd edition, Mc Graw Hill, 2003.
- 6. B.K. Pandey and S. Chaturvedi, Engineering Physics, 1st edition, Cengage Learning, 2013.

I Year II Semester		L	Т	Р	С		
		3	0	0	3		
DATA STRUCTURES THROUGH C							

Preamble:

This course is core subject developed to help the student understand the data structure principles used in power systems, machines and control systems. This subject covers linear data structures, linked lists, trees, graphs, searching and sorting.

Course Objectives:

- •Operations on linear data structures and their applications.
- •The various operations on linked lists.
- •The basic concepts of Trees, Traversal methods and operations.
- •Concepts of implementing graphs and its relevant algorithms.
- •Sorting and searching algorithms.

Unit-1: Linear Data Structures: Arrays, Stacks and Queues

Data Structures -Operations-Abstract Data Types-Complexity of Algorithms-Time and Space-Arrays-Representation of Arrays-Linear Arrays-Insertion–Deletion and Traversal of a Linear Array-Array as an Abstract Data Type-Multi-Dimensional Arrays-Strings-String Operations-Storing Strings-String as an Abstract Data Type

Stack -Array Representation of Stack-Stack Abstract Data Type-Applications of Stacks: Prefix-Infix and Postfix Arithmetic Expressions-Conversion-Evaluation of Postfix Expressions-Recursion-Towers of Hanoi-Queues-Definition-Array Representation of Queue-The Queue Abstract Data Type-Circular Queues-Dequeues-Priority Queues.

Unit-II: Linked Lists

Pointers-Pointer Arrays-Linked Lists-Node Representation-Single Linked List-Traversing and Searching a Single Linked List-Insertion into and Deletion from a Single Linked List-Header Linked Lists-Circularly Linked Lists-Doubly Linked Lists-Linked Stacks and Queues-Polynomials-Polynomial Representation-Sparse Matrices.

Unit-III: Trees

Terminology-Representation of Trees-Binary Trees-Properties of Binary Trees-Binary Tree Representations-Binary Tree Traversal-Preorder-In-order and Post-order Traversal-Threads-Thread Binary Trees-Balanced Binary Trees-Heaps-Max Heap-Insertion into and Deletion from a Max Heap-Binary Search Trees-Searching-Insertion and Deletion from a Binary Search Tree-Height of Binary Search Tree, m-way Search Trees, B-Trees.

Unit-IV: Graphs

Graph Theory Terminology-Graph Representation-Graph Operations-Depth First Search-Breadth First Search-Connected Components-Spanning Trees-Biconnected Components-Minimum Cost Spanning Trees-Kruskal's Algorithm-Prism's Algorithm-Shortest Paths-Transitive Closure-All-Pairs Shortest Path-Warshall's Algorithm.

Unit-V: Searching and Sorting

Searching -Linear Search-Binary Search-Fibonacci Search-Hashing-Sorting-Definition-Bubble Sort-Insertion sort-Selection Sort-Quick Sort-Merging-Merge Sort-Iterative and Recursive Merge Sort-Shell Sort-Radix Sort-Heap Sort.

Course Outcomes:

After the completion of the course the student should be able to:

- data structures concepts with arrays, stacks, queues.
- linked lists for stacks, queues and for other applications.
- traversal methods in the Trees.
- various algorithms available for the graphs.
- sorting and searching in the data ret retrieval applications.

Text Books:

- 1. Fundamentals of Data Structures in C, 2nd Edition, E.Horowitz, S.Sahni and Susan Anderson Freed, Universities Press Pvt. Ltd.
- 2. Data Structures with C, Seymour Lipschutz, Schaum's Outlines, Tata McGraw Hill.

AAKINADA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

I Year II Semester		L	Т	Р	С		
		3	0	0	3		
ELECTRICAL CIRCUIT ANALYSIS -I							

Preamble:

This course introduces the basic concepts of circuit analysis which is the foundation for all subjects of the Electrical Engineering discipline. The emphasis of this course is laid on the basic analysis of circuits which includes single phase circuits, magnetic circuits, network theorems, transient analysis and network topology.

Course Objectives:

- To study the concepts of passive elements, types of sources and various network reduction techniques.
- To understand the applications of network topology to electrical circuits.
- To study the concept of magnetic coupled circuit.
- To understand the behavior of RLC networks for sinusoidal excitations.
- To study the performance of R-L, R-C and R-L-C circuits with variation of one of the parameters and to understand the concept of resonance.
- To understand the applications of network theorems for analysis of electrical networks.

UNIT-I

Introduction to Electrical Circuits

Basic Concepts of passive elements of R, L, C and their V-I relations, Sources (dependent and independent), Kirchhoff's laws, Network reduction techniques (series, parallel, series - parallel, star-to-delta and delta-to-star transformation), source transformation technique, nodal analysis and mesh analysis to DC networks with dependent and independent voltage and current sources., node and mesh analysis.

UNIT-II

Magnetic Circuits

Basic definition of MMF, flux and reluctance, analogy between electrical and magnetic circuits, Faraday's laws of electromagnetic induction – concept of self and mutual inductance, Dot convention – coefficient of coupling and composite magnetic circuit, analysis of series and parallel magnetic circuits.

UNIT-III

Single Phase A.C Systems

Periodic waveforms (determination of rms, average value and form factor), concept of phasor, phase angle and phase difference – waveforms and phasor diagrams for lagging, leading networks, complex and polar forms of representations. node and mesh analysis.

Steady state analysis of R, L and C circuits, power factor and its significance, real, reactive and apparent power, waveform of instantaneous power and complex power.

UNIT-IV

Resonance - Locus Diagrams

series and parallel resonance, selectively band width and Quality factor, locus diagram- RL, RC, RLC with R, L and C variables.

UNIT-V

Network theorems (DC & AC Excitations)

Superposition theorem, Thevenin's theorem, Norton's theorem, Maximum Power Transfer theorem, Reciprocity theorem, Millman's theorem and compensation theorem.

Course Outcomes:

After the completion of the course the student should be able to:

- Various electrical networks in presence of active and passive elements.
- Electrical networks with network topology concepts.
- Any magnetic circuit with various dot conventions.
- Any R, L, C network with sinusoidal excitation.
- Any R, L, network with variation of any one of the parameters i.e., R, L, C and f.
- Electrical networks by using principles of network theorems.

Text Books:

- 1. Engineering Circuit Analysis by William Hayt and Jack E. Kemmerley, 6th edition McGraw Hill Company, 2012.
- 2. Network Analysis: Van Valkenburg; Prentice-3rd edition, Hall of India Private Ltd, 2015.

Reference Books:

- 1. Fundamentals of Electrical Circuits by Charles K. Alexander and Mathew N.O.Sadiku, 5th edition, McGraw Hill Education (India), 2013.
- 2. Linear Circuit Analysis by De Carlo, Lin, 2nd edition, Oxford publications, 2001.
- 3. Electric Circuits (Schaum's outlines) by Mahmood Nahvi & Joseph Edminister, Adapted by KumaRao, 5th Edition McGraw Hill, 2017.
- 4. Electric Circuits by David A. Bell, 7th edition, Oxford publications, 2009.
- 5. Introductory Circuit Analysis by Robert L Boylestad, 13th edition, Pearson, 2015
- 6. Circuit Theory (Analysis and Synthesis) by A. Chakrabarthi, 7th edition, DhanpatRai&Co., 2018.

I Year II Semester		L	Т	Р	С
I Tear II Semester		3	0	0	3
BA	SIC CIVIL AND MECHANICAL ENGINE	ERINC	r T		

Course Objectives:

- COB 1: To impart basic principles of stress, strain, shear force and bending moment.
- COB 2: To teach principles of strain measurement using electrical strain gauges.
- COB 3: To impart basic characteristics of building materials.
- COB 4: To familiarize the sources of energy, power plant economics and environmental aspects.
- COB 5: To make the students to understand the basics concept of Boilers & I.C. engines.

Course Outcomes:

At the end of this course, the student will be able to

- CO 1: Apply Shear force diagram & Bending moment diagram principles for Cantilever and Simply supported beams.
- CO 2: Apply concepts of Rosette analysis for strain measurements.
- CO 3 : Analyse the characteristics of common building materials.
- CO 4 : Compare the working characteristics of Internal Combustion engines.
- CO 5: Compare the differences between boiler mountings and accessories.

Mapping of Course Outcomes with Program Outcomes

CO/PO	PO 1 (K3)	PO 2 (K4)	PO 3 (K5)	PO 4 (K3)	PO 5 (K3)	PO 6 (K3)	PO 7 (K2)	PO 8 (K3)	PO 9 (K2)	PO 10 (K2)	PO 11 (K3)	PO12 (K)
CO1 (K3)	3	2	-	-	-	-	2	-	-	-	-	-
CO2 (K3)	3	2	-	-	-	-	3	-	-	-	-	-
CO3 (K4)	3	3	-	-	-	-	3	-	-	-	-	-
CO4 (K4)	2	3	-	-	-	-	3	-	-	-	-	-
CO5 (K4)	3	3	-	-	-	-	3	-	-	-	-	-

Mapping of Course Outcomes with Program Specific Outcomes

CO / PSO	PSO 1(K5)	PSO 2(K5)	PSO 3(K3)
CO1 (K3)	-	-	-
CO2 (K3)	-	1	-
CO3 (K4)	-	2	-
CO4 (K4)	-	-	-
CO5 (K4)	-	2	-

UNIT -I:

Basic Definitions of Force -Stress -Strain -Elasticity. Shear force - Bending Moment Torsion . Simple problems on Shear force Diagram and Bending moment Diagram for cantilever and simply supported beams.

UNIT -II:

Measurement of Strain - Electrical Capacitance and Resistance Strain gauges multi channel strain indicators. Rosette analysis Rectangular and Triangular strain rosettes.

UNIT – III:

Characteristics of-common building materials — Brick – Types Testing; Timber Classification Seasoning Defects in Timber; Glass Classification uses; steel and its applications in construction industry.

UNIT IV

Hydraulic Turbines and Pumps:

Introduction to Power transmission tools, Hydraulic Turbines: Classification-Difference between Impulse and Reaction Turbine.

Pumps: Classification of Pumps, Centrifugal Pump-Applications-Priming-Reciprocating Pumps, Single Acting & Double acting-Comparison with Centrifugal Pump

UNIT V -

I.C Engine: Heat Engine – Types of Heat Engine–Classification of I.C. Engine-Valve Timing Diagram, Port Timing Diagram- Comparison of 2S & 4S Engines- Comparisonof Petrol Engine and Diesel Engine-Fuel System of a Petrol Engine-Ignition Systems. **Boilers:** Classification of Boilers – – Simple Vertical Boiler – Cochran Boiler – Babcock and–Wilcox Boiler Benson Boiler Difference between Fire Tube and Water Tube Boilers Boilers and Accessories.

Text Books:

- 1. Basic Civil and Mechanical Engineering, by Prof. V. Vijayan, Prof. M. Prabhakaran and Er. R. Viashnavi, 2nd edition, S. Chand Publication, 2010
- 2. Elements of Mechanical Engineering, Fourth Edition, S. Trymbaka Murthy, University Press, 2014
- 4. Shanmugam G and Palanichamy M S, Basic Civil and Mechanical Engineering, Tata McGraw Hill Publishing Co., New Delhi, (1996).
- 5. Ramamrutham S., Basic Civil Engineering, Dhanpat Rai Publishing Co. (P) Ltd. (1999).

Reference Books:

- 1. Seetharaman S., "Basic Civil Engineering", Anuradha Agencies, (2005).
- 2. Venugopal K. and Prahu Raja V., "Basic Mechanical Engineering", Anuradha Publishers, Kumbakonam, (2000).
- 3. Er. R. Vaishnavi, Basic Civil and Mechanical Engineering, 2/e, S.Chand Publications (2003)

Web Links:

- 1. http://www.umich.edu/~nppcpub/resources/compendia/ARCHpdfs/ARCHsbmIntro .pdf
- 2. http://www.hillagric.ac.in/edu/coa/agengg/lecture/243/Lecture%203%20Engine.pdf

I Year II Semester		L	Т	Р	С
1 Year 11 Semester		0	0	3	1.5
	APPLIED PHYSICS LAB				

(For All Circuital Branches like CSE, ECE, EEE etc.)

(Any 10 of the following listed experiments)

List of Applied Physics Experiments

- 1. Determination of thickness of thin object by wedge method.
- 2. Determination of radius of curvature of a given plano convex lens by Newton's rings.
- 3. Determination of wavelengths of different spectral lines in mercury spectrumusing diffraction grating in normal incidence configuration.
- 4. Determination of dispersive power of the prism.
- 5. Determination of dielectric constant using charging and discharging method.
- 6. Study the variation of B versus H by magnetizing the magnetic material (B-H curve).
- 7. Determination of numerical aperture and acceptance angle of an optical fiber.
- 8. Determination of wavelength of Laser light using diffraction grating.
- 9. Estimation of Planck's constant using photoelectric effect.
- 10. Determination of the resistivity of semiconductor by four probe method.
- 11. To determine the energy gap of a semiconductor using p-n junction diode.
- 12. Magnetic field along the axis of a current carrying circular coil by Stewart & Gee's Method
- 13. Determination of Hall voltage and Hall coefficient of a given semiconductor using Hall Effect .
- 14. Measurement of resistance of a semiconductor with varying temperature.
- 15. Resistivity of a Superconductor using four probe method & Meissner effect.

References:

1. S. Balasubramanian, M.N. Srinivasan "A Text Book of PracticalPhysics"- S Chand Publishers, 2017.

L		I OF ELECTRICAL AND ELECTRONIC		GINE		r	
T V.	II C		L	Т	Р	С	

I Year II Semester		L	1	P	U
i i cai ii Scinestei		0	0	3	1.5
BASIC	CIVIL AND MECHANICAL ENGINEER	RING	LAB		

Preamble:

Course Objectives:

- COB 1: To make the student learn about the constructional features and operational details of various types of internal combustion engines.
- COB 2: To make the student learn about the constructional features, operational details of various types of hydraulic turbines
- COB 3: To practice the student about the fundamental of fluid dynamic equations and its applications fluid jets.
- COB 4: To train the student in the areas of types of hydro electric power plants, estimation and calculation of different loads by considering various factors.

Course Outcomes:

At the end of the Course, Student will be able to:

- CO 1: Solve to arrive at finding constant speed and variable speed on IC engines and interpret their performance.
- CO 2: Estimate energy distribution by conducting heat balance test on IC engines
- CO 3: Explain procedure for standardization of experiments.
- CO 4: Determine flow discharge measuring device used in pipes channels and tanks.
- CO 5: Determine fluid and flow properties.
- CO 6: Solve for drag coefficients.
- CO 7: Test for the performance of pumps and turbines

Mapping of Course Outcomes with Program Outcomes

CO/PO	PO 1 (K3)	PO 2 (K4)	PO 3 (K5)	PO 4 (K5)	PO 5 (K3)	PO 6 (K3)	PO 7 (K2)	PO 8 (K3)	PO 9 (K2)	PO 10 (K2)	PO 11 (K3)	PO 12 (K3)
CO1(K3)	3	2	1	1	3	3	-	-	-	2	3	-
CO2(K5)	3	3	-	-	3	3	-	-	-	3	3	-
CO3(K2)	2	1	-	-	2	2	-	-	-	3	2	-
CO4(K5)	3	3	3	3	3	3	-	-	-	-	3	-
CO5(K5)	3	3	3	3	3	3	-	-	-	-	3	-
CO6(K3)	3	2	1	1	3	3	-	-	-	3	3	-
CO7(K4)	3	3	2	2	3	3	-	-	-	3	3	-

Mapping of Course Outcomes with Program Specific Outcomes

CO/PSO	PSO 1 (K5)	PSO 2 (K5)	PSO 3 (K3)
CO1 (K3)	-	-	-
CO2 (K5)	-	-	-
CO3 (K2)	-	-	-
CO4 (K5)	-	-	-
CO5 (K5)	-	-	-
CO6 (K3)	-	-	-
CO7 (K4)	-	3	-

Part-A

List of Experiments: Thermal Engineering Lab:

- 1. Valve time timing diagram on 4-S Diesel engine.
- 2. Valve time timing diagram on 4-S Petrol engine.
- 3. Port timing diagram on 2-S Petrol engine.
- 4. Study on Boiler models.
- 5. COP determination of Refrigeration tutor.
- 6. COP determination of Air conditioner tutor.

Part-B

Hydraulic machinery Lab:

- 1. Determination of coefficient of discharge on Impact of Jets on Vanes apparatus.
- 2. Performance test on Pelton wheel.
- 3. Performance test on Francis turbine.
- 4. Performance test on Kaplan turbine.
- 5. Performance test on Single stage Centrifugal pump.
- 6. Performance test on Reciprocating pump.

List of Augmented Experiments:

(Student can perform any one of the following experiments)

- 1. Heat balance sheet on VCR engine
- 2. Determination of Loss of head due to sudden contraction and suddenenlargement.
- 3. Heat balance sheet on Multi cylinder Petrol engine.
- 4. Heat balance sheet on 4-S diesel engine.
- 5. Determination of coefficient of discharge on Venturimeter.
- 6. Determination of coefficient of discharge on Orificemeter.

Web Links:

- 1. https://www.iare.ac.in/sites/default/files/lab2/TE%2Blab.pdf
- 2. https://www.dbit.ac.in/ce/syllabus/hydraulics-and-hydraulic-machines-lab.pdf

I Year II Semester		L T	Т	Р	С				
		0	0	3	1.5				
DATA STRUCTURES THROUGH C LAB									

Any 10 of the following experiments are to be conducted

Course Objectives:

- To develop skills to design and analyze simple linear and non linear data structures.
- To strengthen the ability to the students to identify and apply the suitable data structure for the given real world problem.
- To gain knowledge in practical applications of data structures.

List of Experiments:

- 1. Implement operations on Strings.
- 2. Implement basic operations on Stacks.
- 3. Implement basic operations on Queue.
- 4. Implement basic operations on Circular Queue.
- 5. Implement multi stack in a single array.
- 6. Implement List data structure using i) array ii) singly linked list.
- 7. Implement basic operations on doubly linked list.
- 8. Implement basic operations (insertion, deletion, search, find min and find max) on Binary Search trees.
- 9. Implementation of Heaps.
- 10. Implementation of Breadth First Search Techniques.
- 11. Implementation of Depth First Search Techniques.
- 12. Implementation of Prim's algorithm.
- 13. Implementation of Kruskal's Algorithm.
- 14. Implementation of Linear search.
- 15. Implementation of Fibanocci search.
- 16. Implementation of Merge sort.
- 17. Implementation of Quick sort.

Course Outcomes:

After the completion of the course the student should be able to:

- Be able to design and analyze the time and space efficiency of the data structure.
- Be capable to identity the appropriate data structure for given problem.
- Have practical knowledge on the applications of data structures.

I Voor II Comestor		L	Т	Р	С
I Year II Semester		2	0	0	0
	CONSTITUTION OF INDIA				

Preamble:

Course Objectives:

- > To Enable the student to understand the importance of constitution
- > To understand the structure of executive, legislature and judiciary
- > To understand philosophy of fundamental rights and duties
- To understand the autonomous nature of constitutional bodies like Supreme Court and high court controller and auditor general of India and election commission of India.
- > To understand the central and state relation financial and administrative.

UNIT-I

Introduction to Indian Constitution: Constitution meaning of the term, Indian Constitution -Sources and constitutional history, Features - Citizenship, Preamble, Fundamental Rights and Duties, Directive Principles of State Policy.

Learning outcomes:

After completion of this unit student will

- Understand the concept of Indian constitution
- Apply the knowledge on directive principle of state policy
- Analyze the History, features of Indian constitution
- Evaluate Preamble Fundamental Rights and Duties

UNIT-II

Union Government and its Administration Structure of the Indian Union: Federalism, Centre-State relationship, President: Role, power and position, PM and Council of ministers, Cabinet and Central Secretariat, Lok Sabha, Rajya Sabha, The Supreme Court and High Court: Powers and Functions;

Learning outcomes: -After completion of this unit student will

- Understand the structure of Indian government
- Differentiate between the state and central government
- Explain the role of President and Prime Minister
- Know the Structure of supreme court and High court

UNIT-III

State Government and its Administration Governor - Role and Position - CM and Council of ministers, State Secretariat: Organization, Structure and Functions

Learning outcomes: -After completion of this unit student will

- Understand the structure of state government
- Analyze the role Governor and Chief Minister
- Explain the role of state Secretariat
- Differentiate between structure and functions of state secretariat

UNIT-IV

A. Local Administration - District's Administration Head - Role and Importance, Municipalities - Mayor and role of Elected Representative - CEO of Municipal Corporation Pachayati Raj: Functions PRI: Zila Panchayat, Elected officials and their roles, CEO Zila Panchayat: Block level Organizational Hierarchy - (Different departments), Village level -Role of Elected and Appointed officials - Importance of grass root democracy

Learning outcomes: -After completion of this unit student will

- Understand the local Administration
- Compare and contrast district administration role and importance
- Analyze the role of Myer and elected representatives of Municipalities
- Evaluate Zilla panchayat block level organization

UNIT-V

Election Commission: Election Commission- Role of Chief Election Commissioner and Election Commissionerate State Election Commission, Functions of Commissions for the welfare of SC/ST/OBC and women

Learning outcomes: -After completion of this unit student will

- Know the role of Election Commission apply knowledge
- Contrast and compare the role of Chief Election commissioner and Commissionerate
- Analyze role of state election commission
- Evaluate various commissions of viz SC/ST/OBC and women

References:

- 1. Durga Das Basu, Introduction to the Constitution of India, 12th edition Prentice Hall of India Pvt. Ltd. New Delhi 2011.
- 2. Subash Kashyap, Indian Constitution, 2nd edition, National Book Trust, 2011.
- 3. J.A. Siwach, Dynamics of Indian Government & Politics, 2nd edition, Sterling Pub Private Ltd.,1990.
- 4. D.C. Gupta, Indian Government and Politics, 8th edition, Vikas Publishing House Pvt Ltd., 2015.
- 5. H.M.Sreevai, Constitutional Law of India, 4th edition in 3 volumes (Universal Law Publication), 2015.
- 6. J.C. Johari, Indian Government and Politics Hans, 13th edition, Shoban Lal & Co.2012.
- 7. J. Raj Indian Government and Politics, 1st edition, SAGE Texts Publication, 2008.
- 8. M.V. Pylee, Indian Constitution Durga Das Basu, Human Rights in Constitutional Law, 3rd edition, Lexis Nexis Publications, 2008.
- 9. Noorani, A.G., (South Asia Human Rights Documentation Centre), Challenges to Civil Right), Challenges to Civil Rights Guarantees in India, Oxford University Press 2012

E-resources:

- 1. nptel.ac.in/courses/109104074/8
- 2. nptel.ac.in/courses/109104045/
- 3. nptel.ac.in/courses/101104065/
- 4. www.hss.iitb.ac.in/en/lecture-details
- 5. www.iitb.ac.in/en/event/2nd-lecture-institute-lecture-series-indian-constitution

Course Outcomes:

At the end of the semester/course, the student will be able to have a clear knowledge on the following:

- Understand historical background of the constitution making and its importance for building a democratic India.
- Understand the functioning of three wings of the government i.e., executive, legislative and judiciary.
- Understand the value of the fundamental rights and duties for becoming good citizen of India.
- Analyze the decentralization of power between central, state and local selfgovernment.
- Apply the knowledge in strengthening of the constitutional institutions like CAG, Election Commission and UPSC for sustaining democracy.
 - 1. Know the sources, features and principles of Indian Constitution.
 - 2. Learn about Union Government, State government and its administration.
 - 3. Get acquainted with Local administration and Pachayati Raj.
 - 4. Be aware of basic concepts and developments of Human Rights.
 - 5. Gain knowledge on roles and functioning of Election Commission

COURSE STRUCTURE

For UG – R20

B. TECH - MECHANICAL ENGINEERING

(Applicable for batches admitted from 2020-2021)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA - 533 003, Andhra Pradesh, India

COURSE STRUCTURE

I Year – I SEMESTER

Sl. No	Course Code	Subjects	L	Т	Р	Credits
1	BSC-1	Calculus & Differential Equations (M-I)	3	0	0	3
2	BSC-2	Engineering Physics	3	0	0	3
3	ESC-1	Programming for Problem Solving	3	0	0	3
4	HSC-1	Communicative English	3	0	0	3
5	ESC-2	Engineering Drawing	2	0	2	3
6	BSC-L1	Engineering Physics Lab	0	0	3	1.5
7	ESC-L1	Programming for Problem Solving Using C Laboratory	0	0	3	1.5
8	HSC-L1	English Communication Skills Laboratory	0	0	3	1.5
9	MC -1	Environmental Science	2	0	0	0
	Total Credits					19.5

I Year – II SEMESTER

Sl.No	Course Code	Subjects	L	Т	Р	Credits
1	BSC-3	Linear Algebra & Numerical Methods (M-II)	3	0	0	3
2	BSC-4	Engineering Chemistry	3	0	0	3
3	ESC-3	Engineering Mechanics	3	0	0	3
4	ESC-4	Basic Electrical & Electronics Engineering	3	0	0	3
5	ESC-5	Thermodynamics	3	0	0	3
6	ESC-L2	Workshop Practice Lab	0	0	3	1.5
7	BSC-L2	Engineering Chemistry Laboratory	0	0	3	1.5
8	ESC-L3	Basic Electrical & Electronics Engineering Lab	0	0	3	1.5
9	MC-2	Constitution of India	2	0	0	0
	Total Credits					19.5

SUBJECTS FOR B. Tech. (MINOR) in MECHANICAL ENGINEERING

B. Te	ch. (MINOR) in MECHANICAL ENGINEERING	Pre-requisites
1.	Basic Thermodynamics	NIL
2.	Manufacturing Processes	NIL
3.	Materials Science and Engineering	NIL
4.	Basic Mechanical Design	NIL
5.	Optimization Techniques	NIL
6.	Power Plant Engineering	Basic Thermodynamics
7.	Automobile Engineering	Basic Thermodynamics
8.	Industrial Engineering and Management	NIL
9.	Product Design & Development	NIL
10.	Smart Manufacturing	NIL
11.	Mechanical Measurements	NIL
12.	Industrial Robotics	Engineering Mechanics
13.	Mechatronics	NIL

SUBJECTS FOR B. Tech. (HONORS) IN MECHANICAL ENGINEERING

	HONORS IN MECHANICAL ENGINEERING	Pre-requisites
	POOL – 1 (in II-II)	
1.	Advanced Mechanics of Fluids	Fluid Mechanics
2.	Green Manufacturing	Production Technology
3.	Analysis and Synthesis of Mechanisms	Kinematics of Machinery
4.	Alternative Fuels Technologies	Basic Thermodynamics
5.	Gear Engineering	Kinematics of Machinery
	POOL-2 (in III-I)	
1.	Experimental Methods in Fluid Mechanics	Fluid Mechanics
2.	Advanced Optimization Techniques	Operations Research
3.	Micro Electro Mechanical Systems	Nil
4.	Tribology	Nil
5.	Statistical Design in Quality Control	Nil
	POOL-3 (in III-II)	
1.	Advanced Computational Fluid Dynamics	Fluid Mechanics
2.	Material Characterization Techniques	Material Science and Metallurgy
3.	Product Design	Nil
4.	Electric & Hybrid Vehicles	Thermal Engineering
5.	Mechanical Vibrations & Acoustics	Nil
	POOL-4 (in IV-I)	
1.	Advanced Thermodynamics	Nil
2.	Design for Manufacturing and Assembly	Production Technology
3.	Robotics and Control	Kinematics of Machinery
4.	Turbo Machines	FM&HM
5.	Materials Technology	Nil

I Year I Semester		L	Т	P	С			
1 Year I Semester		3	0	0	3			
(CALCULUS & DIFFERENTIAL EQUATIONS-M1							

Course Objectives:

- □ To familiarize a variety of well-known sequences and series, with a developing intuition about the behaviour of new ones.
- \Box To enlighten the learners in the concept of differential equations and multivariable calculus.
- □ To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

Course Outcomes: At the end of the course, the student will be able to

- □ utilize mean value theorems to real life problems (L3)
- \Box solve the differential equations related to various engineering fields (L3)
- \Box familiarize with functions of several variables which is useful in optimization (L3)
- □ apply double integration techniques in evaluating areas bounded by region (L3)
- □ students will also learn important tools of calculus in higher dimensions. Students will become familiar with 2- dimensional and 3-dimensional coordinate systems(L5)

UNIT – I: Sequences, Series and Mean value theorems:

Sequences and Series: Convergences and divergence – Ratio test – Comparison tests – Integral test –Cauchy's root test – Alternate series– Leibnitz's rule. Mean Value Theorems (without proofs): Rolle's Theorem – Lagrange's mean value theorem – Cauchy's mean value theorem – Taylor's and Maclaurin's theorems with remainders, Problems and applications on the above theorem.

UNIT – II: Differential equations of first order and first degree:

Linear differential equations– Bernoulli's equations –Exact equations and equations reducible to exactform.

Applications: Newton's Law of cooling– Law of natural growth and decay– Orthogonaltrajectories–Electrical circuits.

UNIT – III: Linear differential equations of higher order:

Homogeneous and Non-homogeneous differential equations of higher order with constant coefficients – with non-homogeneous term of the type e^{ax} , sin ax, cos ax, polynomials in x^n , $e^{ax}V(x)$ and $x^nV(x)$ – Method of Variation of parameters, Cauchy and Legendre's linear equations.

Applications: LCR circuit, Simple Harmonic motion.

UNIT – IV: Partial differentiation:

Introduction – Homogeneous function – Euler's theorem– Total derivative– Chain rule– Jacobian – Functional dependence – Taylor's and MacLaurin's series expansion of functions of two variables. Applications: Maxima and Minima of functions of twovariables without constraints and Lagrange'smethod.

(**10hrs**)

(10hrs)

(10hrs)

(10hrs)

UNIT – V: Multiple integrals:

(8 hrs)

Double and Triple integrals – Change of order of integration in double integrals – Change of variables topolar, cylindrical and spherical coordinates. Applications: Finding Areas and Volumes.

Text Books:

- 1. **B. S. Grewal**, Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- 2. B. V. Ramana, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw HillEducation.

Reference Books:

- 1. **Erwin Kreyszig,** Advanced Engineering Mathematics, 10th Edition, Wiley-India.
- 2. Joel Hass, Christopher Heil and Maurice D. Weir, Thomas calculus, 14thEdition, Pearson.
- 3. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 2013.
- 4. Srimantha Pal, S C Bhunia, Engineering Mathematics, Oxford University Press.

I Year I Semester	L	Т	Р	C
1 Year I Semester	3	0	0	3

ENGINEERING PHYSICS

Unit-I: Wave Optics

Interference: Principle of superposition –Interference of light - Interference in thin films (Reflection Geometry) & applications -Colors in thin films- Newton's Rings-Determination of wavelength and refractive index.

Diffraction: Introduction - Fresnel and Fraunhofer diffraction - Fraunhofer diffraction due to single slit, double slit - N-slits(Qualitative) – Grating - Dispersive power and resolving power of Grating(Qualitative).

Polarization: Introduction-Types of polarization - Polarization by reflection, refraction and Double refraction - Nicol's Prism -Half wave and Quarter wave plates.

Unit Outcomes:

The students will be able to

- **Explain** the need of coherent sources and the conditions for sustained interference (L2)
- Identify engineering applications of interference (L3)
- Analyze the differences between interference and diffraction with applications (L4)
- > **Illustrate** the concept of polarization of light and its applications (L2)
- Classify ordinary polarized light and extraordinary polarized light (L2)

Unit-II: Lasers and Fiber optics

Lasers: Introduction – Characteristics of laser – Spontaneous and Stimulated emissions of radiation – Einstein's coefficients – Population inversion –Lasing action- Pumping mechanisms – Ruby laser – He-Ne laser - Applications of lasers.

Fiber optics: Introduction –Principle of optical fiber- Acceptance Angle-NumericalAperture-Classification of optical fibers based on refractive index profile and modes –Propagation of electromagnetic wave through optical fibers -Applications.

Unit Outcomes:

The students will be able to

- Understand the basic concepts of LASER light Sources (L2)
- > Apply the concepts to learn the types of lasers (L3)
- > Identifies the Engineering applications of lasers (L2)
- **Explain** the working principle of optical fibers (L2)
- Classify optical fibers based on refractive index profile and mode of propagation (L2)
- > Identify the applications of optical fibers in various fields (L2)

12hrs

10hrs

UNIT III: Engineering Materials

8hrs

Dielectric Materials: Introduction - Dielectric polarization - Dielectric polarizability, Susceptibility and Dielectric constant - Types of polarizations-Electronic (Quantitative), Ionic (Quantitative) and Orientation polarizations (Qualitative) - Lorentz internal field- Clausius- Mossotti equation- Piezoelectricity.

Magnetic Materials: Introduction - Magnetic dipole moment - Magnetization-Magnetic susceptibility and permeability - Origin of permanent magnetic moment -Classification of magnetic materials: Dia, para, Ferro, antiferro & Ferrimagnetic materials - Domain concept forFerromagnetism & Domain walls (Qualitative) -Hysteresis - soft and hard magnetic materials-Eddy currents- Engineering applications.

Unit Outcomes:

The students will be able to

- **Explain** the concept of dielectric constant and polarization in dielectric materials (L2)
- Summarize various types of polarization of dielectrics (L2)
- Interpret Lorentz field and Claussius- Mosotti relation in dielectrics(L2)
- Classify the magnetic materials based on susceptibility and their temperaturedependence(L2)
- **Explain** the applications of dielectric and magnetic materials (L2)
- > Apply the concept of magnetism to magnetic devices (L3)

Unit-IV: Acoustics and Ultrasonics

Acoustics: Introduction – requirements of acoustically good hall– Reverberation – Reverberation time– Sabine's formula (Derivation using growth and decay method) - Absorption coefficient and its determination – Factors affecting acoustics of buildings and their remedial measures.

Ultrasonics: Introduction - Properties - Production by magnetostriction and piezoelectric methods

– Detection - Acoustic grating - Non Destructive Testing – pulse echo system through transmission and reflection modes - Applications.

Unit Outcomes:

The students will be able to

- **Explain** how sound is propagated in buildings (L2)
- > Analyze acoustic properties of typically used materials in buildings (L4)
- **Recognize** sound level disruptors and their use in architectural acoustics (L2)
- > Identify the use of ultrasonics in different fields (L3)

Unit-V: Crystallography and X-ray diffraction

Crystallography: Space lattice, Basis, Unit Cell and lattice parameters – Bravais Lattice

- crystal systems (3D) - coordination number - packing fraction of SC, BCC & FCC - Miller indices - separation between successive (hkl) planes.

10hrs

8hrs

X-ray diffraction: Bragg's law - X-ray Diffractometer – crystal structure determination by Laue'sand powder methods.

Unit Outcomes: The students will be able to

- Classify various crystal systems (L2)
- > **Identify** different planes in the crystal structure (L3)
- > Analyze the crystalline structure by Bragg's X-ray diffractometer (L4)
- > Apply powder method to measure the crystallinity of a solid (L4)

Text books:

- 1. Engineering Physics Dr. M.N. Avadhanulu & Dr. P.G. Kshirsagar, S. Chand and Company
- 2. Engineering physics D.K. Battacharya and Poonam Tandon, Oxford University press.
- 3. Engineering Physics by P.K.Palanisamy SciTech publications.

Reference Books:

- 1. Fundamentals of Physics Halliday, Resnick and Walker, John Wiley & Sons
- 2. Engineering Physics M.R.Srinivasan, New Age Publications
- 3. Engineering Physics D K Pandey, S. Chaturvedi, Cengage Learning
- 4. Engineering Physics Sanjay D. Jain, D. Sahasrambudhe and Girish, University Press

		L	Т	Р	С
I Year - I Semester		3	0	0	3
PR	OGRAMMING FOR PROBLEM SOLVING US	SING	С		

<u>COURSE OBJECTIVES:</u> The objectives of Programming for Problem Solving Using C are

- 1) To learn about the computer systems, computing environments, developing of acomputerprogram and Structure of a C Program
- 2) To gain knowledge of the operators, selection, control statements and repetition in C
- 3) To learn about the design concepts of arrays, strings, enumerated structure and uniontypes. Tolearn about their usage.
- 4) To assimilate about pointers, dynamic memory allocation and know the significance of Preprocessor.
- 5) To assimilate about File I/O and significance of functions

UNIT I

Introduction to Computers: Creating and running Programs, Computer Numbering System, StoringIntegers, Storing Real Numbers

Introduction to the C Language: Background, C Programs, Identifiers, Types, Variable, Constants,Input/output, Programming Examples, Scope, Storage Classes and Type Qualifiers.

Structure of a C Program: Expressions Precedence and Associativity, Side Effects, EvaluatingExpressions, Type Conversion Statements, Simple Programs, Command Line Arguments.

UNIT II

Bitwise Operators: Exact Size Integer Types, Logical Bitwise Operators, Shift Operators. **Selection & Making Decisions:** Logical Data and Operators, Two Way Selection, Multiway Selection, More Standard Functions

Repetition: Concept of Loop, Pretest and Post-test Loops, Initialization and Updating, Event and Counter Controlled Loops, Loops in C, Other Statements Related to Looping, Looping Applications, Programming Examples

UNIT III

Arrays: Concepts, Using Array in C, Array Application, Two Dimensional Arrays, MultidimensionalArrays, Programming Example – Calculate Averages **Strings:** String Concepts, C String, String Input / Output Functions, Arrays of Strings, String Manipulation Functions String/ Data Conversion, A Programming Example – Morse Code **Enumerated, Structure, and Union:** The Type Definition (Type def), Enumerated Types, Structure,Unions, and Programming Application

UNIT IV

Pointers: Introduction, Pointers to pointers, Compatibility, L value and R value **Pointer Applications:** Arrays, and Pointers, Pointer Arithmetic and Arrays, Memory Allocation Function, Array of Pointers, Programming Application **Processor Commands**: Processor Commands

UNIT V

Functions: Designing, Structured Programs, Function in C, User Defined Functions, Inter-Function Communication, Standard Functions, Passing Array to Functions, Passing Pointers to Functions, Recursion

Text Input / Output: Files, Streams, Standard Library Input / Output Functions, Formatting Input / Output Functions, Character Input / Output Functions

Binary Input / Output: Text versus Binary Streams, Standard Library, Functions for Files, Converting File Type.

TEXT BOOKS:

- 1. Programming for Problem Solving, Behrouz A. Forouzan, Richard F.Gilberg, CENGAGE
- 2. The C Programming Language, Brian W.Kernighan, Dennis M. Ritchie, 2e, Pearson

REFERENCES:

- 1. Computer Fundamentals and Programming, Sumithabha Das, Mc Graw Hill
- 2. Programming in C, Ashok N. Kamthane, Amit Kamthane, Pearson
- 3. Computer Fundamentals and Programming in C, Pradip Dey, Manas Ghosh, OXFORD

COURSE OUTCOMES:

Upon the completion of the course the student will learn

- 1) To write algorithms and to draw flowcharts for solving problems
- 2) To convert flowcharts/algorithms to C Programs, compile and debug programs
- 3) To use different operators, data types and write programs that use two-way/ multi-way selection
- 4) To select the best loop construct for a given problem
- 5) To design and implement programs to analyze the different pointer applications
- 6) To decompose a problem into functions and to develop modular reusable code
- 7) To apply File I/O operations

I Year - I Semester	L	Т	Р	С
	3	0	0	3

COMMUNICATIVE ENGLISH

Introduction

The course is designed to train students in receptive (listening and reading) as well as productive and interactive (speaking and writing) skills by incorporating a comprehensive, coherent and integrated approach that improves the learners' ability to effectively use English language in academic/ workplace contexts. The shift is from *learning about the language* to *using the language*. On successful completion of the compulsory English language course/s in B.Tech., learners would be confident of appearing for international language qualification/proficiency tests such as IELTS, TOEFL, or BEC, besides being able to express themselves clearly in speech and competently handle the writing tasks and verbal ability component of campus placement tests. Activity based teaching-learning methods would be adopted to ensure that learners would engage inactual use of language both in the classroom and laboratory sessions.

Course Objectives

- Facilitate effective listening skills for better comprehension of academic lectures and English spokenby native speakers
- Focus on appropriate reading strategies for comprehension of various academic texts and authenticmaterials
- Help improve speaking skills through participation in activities such as role plays, discussions and structured talks/oral presentations
- Impart effective strategies for good writing and demonstrate the same in summarizing, writing wellorganized essays, record and report useful information
- Provide knowledge of grammatical structures and vocabulary and encourage their appropriate use inspeech and writing

Learning Outcomes

At the end of the module, the learners will be able to

- understand social or transactional dialogues spoken by native speakers of English and identify thecontext, topic, and pieces of specific information
- > ask and answer general questions on familiar topics and introduce oneself/others
- employ suitable strategies for skimming and scanning to get the general idea of a text and locatespecific information
- > recognize paragraph structure and be able to match beginnings/endings/headings with paragraphs
- ➢ form sentences using proper grammatical structures and correct word forms

<u>Unit 1:</u>

Lesson-1: A Drawer full of happiness from "Infotech English", Maruthi Publications

Lesson-2: Deliverance by Premchand from "**The Individual Society**",Pearson Publications.(Non-detailed)

Listening: Listening to short audio texts and identifying the topic. Listening to prose, prose and conversation.

Speaking: Asking and answering general questions on familiar topics such as home, family, work, studies and interests. Self introductions and introducing others.

Reading: Skimming text to get the main idea. Scanning to look for specific pieces of information.

Reading for Writing: Paragraph writing (specific topics) using suitable cohesive devices; linkers, sign postsand transition signals; mechanics of writing - punctuation, capital letters. **Vocabulary:** Technical vocabulary from across technical branches (20) GRE Vocabulary (20)(Antonyms and Synonyms, Word applications) Verbal reasoning and sequencing of words.

Grammar: Content words and function words; word forms: verbs, nouns, adjectives and adverbs; nouns:countables and uncountables; singular and plural basic sentence structures; simple question form - wh- questions; word order in sentences. **Pronunciation**: Vowels, Consonants, Plural markers and their realizations

Unit 2:

Lesson-1: Nehru's letter to his daughter Indira on her birthday from "**Infotech English**",Maruthi Publications

Lesson-2: Bosom Friend by Hira Bansode from "**The Individual Society**", Pearson Publications.(Non- detailed)

Listening: Answering a series of questions about main idea and supporting ideas after listening to audio texts, both in speaking and writing.

Speaking: Discussion in pairs/ small groups on specific topics followed by short structured talks. Functional English: Greetings and leave takings.**Reading**: Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together.

Reading for Writing: Summarizing - identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions.

Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary Analogies(20 words) (Antonyms and Synonyms, Word applications)

Grammar: Use of articles and zero article; prepositions.

Pronunciation: Past tense markers, word stress-di-syllabic words

<u>Unit 3:</u>

Lesson-1: Stephen Hawking-Positivity 'Benchmark' from 'Infotech English', Maruthi Publications

Lesson-2: Shakespeare's Sister by Virginia Woolf from "The Individual Society", Pearson Publications.(Non-detailed)

Listening:Listening for global comprehension and summarizing what is listened to, both in speaking andwriting.

Speaking: Discussing specific topics in pairs or small groups and reporting what is discussed.FunctionalEnglish:Complaining and Apologizing.

Reading: Reading a text in detail by making basic inferences - recognizing and interpreting specific contextclues; strategies to use text clues for comprehension.Critical reading.

Reading for Writing: Summarizing - identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions. Letter writing-types, format and principles of letter writing.E-mail etiquette, Writing CV's.

Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary (20 words)(Antonyms and Synonyms, Word applications) Association, sequencingof words

Grammar: Verbs - tenses; subject-verb agreement; direct and indirect speech, reporting verbs for academicpurposes.

Pronunciation: word stress-poly-syllabic words.

<u>Unit 4:</u>

Lesson-1: Liking a Tree, Unbowed: Wangari Maathai-biography from "**Infotech English**", MaruthiPublications

Lesson-2: Telephone Conversation-Wole Soyinka from "The IndividualSociety", PearsonPublications.(Non-detailed)

Listening: Making predictions while listening to conversations/ transactional dialogues without video (onlyaudio); listening to audio-visual texts.

Speaking: Role plays for practice of conversational English in academic contexts (formal and informal) -asking for and giving information/directions.Functional English: Permissions, Requesting, Inviting.

Reading: Studying the use of graphic elements in texts to convey information, revealtrends/patterns/relationships, communicative process or display complicated data.

Reading for Writing: Information transfer; describe, compare, contrast, identify significance/trends based oninformation provided in figures/charts/graphs/tables.Writing SOP, writing for media.

Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words)(Antonyms and Synonyms, Word applications) Cloze Encounters. **Grammar**: Quantifying expressions - adjectives and adverbs; comparing and contrasting; degrees of comparison; use of antonyms

Pronunciation: Contrastive Stress

<u>Unit 5:</u>

Lesson-1: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications

Lesson-2: Still I Rise by Maya Angelou from "The Individual Society", Pearson Publications.(Non-detailed)

Listening: Identifying key terms, understanding concepts and interpreting the concepts both in speaking andwriting.

Speaking: Formal oral presentations on topics from academic contexts - without the use of PPTslides.Functional English: Suggesting/Opinion giving.

Reading: Reading for comprehension. RAP StrategyIntensive reading and Extensive reading techniques.

Reading for Writing: Writing academic proposals- writing research articles: format and style. **Vocabulary**: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words)(Antonyms and Synonyms, Word applications) Coherence, matching emotions.

Grammar: Editing short texts – identifying and correcting common errors in grammar and usage (articles, prepositions, tenses, subject verb agreement)

Pronunciation: Stress in compound words

Prescribed text books for theory for Semester-I:

- 1. "Infotech English", Maruthi Publications. (Detailed)
- 2. "The Individual Society", Pearson Publications.(Non-detailed)

Prescribed text book for Laboratory for Semesters-I & II:

1. "Infotech English", Maruthi Publications. (with Compact Disc)

Reference Books:

- □ Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- □ Chase, Becky Tarver. *Pathways: Listening, Speaking and Critical Thinking*. Heinley ELT; 2ndEdition, 2018.
- □ Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- □ Hewings, Martin. *Cambridge Academic English (B2)*. CUP, 2012.

I Voor I Somostor	L	Т	Р	С
I Year - I Semester	2	0	2	3

ENGINEERING DRAWING

Course Objective: Engineering drawing being the principal method of communication for engineers, the objective is to introduce the students, the techniques of constructing the various types of polygons, curves and scales. The objective is also to visualize and represent the 3D objects in 2D planes with proper dimensioning, scaling etc.

Unit I

Objective: To introduce the students to use drawing instruments and to drawpolygons, Engg.Curves.

Polygons: Constructing regular polygons by general methods, inscribing and describing polygons oncircles.

Curves: Parabola, Ellipse and Hyperbola by general and special methods, cycloids, involutes, tangents & normals for the curves.

Scales: Plain scales, diagonal scales and vernier scales

Unit II

Objective: To introduce the students to use orthographic projections, projections of points & simple lines. To make the students draw the projections of the lines inclined to both the planes.

Orthographic Projections: Reference plane, importance of reference lines, projections of points in various quadrants, projections of lines, line parallel to both the planes, line parallel to one plane and inclined to other plane.

Projections of straight lines inclined to both the planes, determination of true lengths, angle ofinclination and traces.

Unit III

Objective: The objective is to make the students draw the projections of the plane inclined to both the planes.

Projections of planes: regular planes perpendicular/parallel to one reference plane and inclined to the other reference plane; inclined to both the reference planes.

Unit IV

Objective: The objective is to make the students draw the projections of the various types of solids indifferent positions inclined to one of the planes.

Projections of Solids – Prisms, Pyramids, Cones and Cylinders with the axis inclined to both the planes.

Unit V

Objective: The objective is to represent the object in 3D view through isometric views. The student will be able to represent and convert the isometric view to orthographic viewand vice versa.

Conversion of isometric views to orthographic views; Conversion of orthographic views to isometric views.

Computer Aided Design, Drawing practice using Auto CAD, Creating 2D&3D drawings of objects using Auto CAD

Note: In the End Examination there will be no question from CAD.

TEXT BOOKS:

- 1. Engineering Drawing by N.D. Bhatt, Chariot Publications
- 2. Engineering Drawing by Agarwal & Agarwal, Tata McGraw Hill Publishers

REFERENCE BOOKS:

- 1. Engineering Drawing by K.L.Narayana & P. Kannaiah, Scitech Publishers
- 2. Engineering Graphics for Degree by K.C. John, PHIPublishers
- 3. Engineering Graphics by PI Varghese, McGrawHill Publishers
- 4. Engineering Drawing + AutoCad K Venugopal, V. Prabhu Raja, New Age

Course Outcome: The student will learn how to visualize 2D & 3D objects.

I Year - I Semester

L T P C 0 0 3 1.5

ENGINEERING PHYSICS LAB

(For All Non-Circuital Branches like ME, CE, Chemical etc) (Any 10 of the following listed experiments)

List of Engineering Physics Experiments

- 1. Laser: Determination of wavelength using diffraction grating.
- 2. Young's modulus of given material by Strain gauge method.
- 3. Study of variation of magnetic field along the axis of a current carrying circular coil byStewart & Gee's method.
- 4. Determination of ultrasonic velocity in given liquid (Acoustic grating).
- 5. Determination of dielectric constant using charging and discharging method.
- 6. Study the variation of B versus H by magnetizing the magnetic material (B-H curve).
- 7. Estimation of Planck's constant using photoelectric effect.
- 8. Rigidity modulus of material of a wire-dynamic method (Torsional pendulum).
- 9. Determination of numerical aperture and acceptance angle of an optical fiber.
- 10. Determination of thickness of thin object by wedge method.
- 11. Determination of radius of curvature of given plano convex lens by Newton's rings.
- 12. Determination of wavelengths of different spectral lines in mercuryspectrum using diffraction grating in normal incidence configuration.
- 13. Determination of dispersive power of the prism.
- 14. Sonometer: Verification of laws of string.
- 15. Measurement of magnetic susceptibility by Kundt's tube method.

References:

1. S. Balasubramanian, M.N. Srinivasan "A Text book of Practical Physics"- SChand Publishers, 2017.

IVoon I Comoston		L	Т	Р	С				
I Year - I Semester		0	0	3	1.5				
PROGRAM	PROGRAMMING FOR PROBLEM SOLVING USING C LABORATORY								

Course Objectives:

- 1) Apply the principles of C language in problem solving.
- 2) To design flowcharts, algorithms and knowing how to debug programs.
- 3) To design & develop of C programs using arrays, strings pointers & functions.
- 4) To review the file operations, preprocessor commands.

Exercise 1:

- 1. Write a C program to print a block F using hash (#), where the F has a height ofsixcharacters and width of five and four characters.
- 2. Write a C program to compute the perimeter and area of a rectangle with a height of 7 inches and width of 5 inches.
- 3. Write a C program to display multiple variables. **Exercise 2:**
- 1. Write a C program to calculate the distance between the two points.
- 2. Write a C program that accepts 4 integers p, q, r, s from the user where r and s are positive and p is even. If q is greater than r and s is greater than p and if the sum of r and s is greater than the sum of p and q print "Correct values", otherwise print "Wrong values". **Exercise 3:**
- 1. Write a C program to convert a string to a long integer.
- 2. Write a program in C which is a Menu-Driven Program to compute the area of the variousgeometrical shape.
- 3. Write a C program to calculate the factorial of a given number. **Exercise 4:**
- 1. Write a program in C to display the n terms of even natural number and their sum.
- 2. Write a program in C to display the n terms of harmonic series and their sum. $1 + 1/2 + 1/3 + 1/4 + 1/5 \dots 1/n$ terms.
- 3. Write a C program to check whether a given number is an Armstrong number or not. **Exercise 5:**
- 1. Write a program in C to print all unique elements in an array.
- 2. Write a program in C to separate odd and even integers in separate arrays.
- 3. Write a program in C to sort elements of array in ascending order. **Exercise 6:**
- 1. Write a program in C for multiplication of two square Matrices.
- 2. Write a program in C to find transpose of a given matrix. **Exercise 7:**
- 1. Write a program in C to search an element in a row wise and column wise sorted matrix.
- 2. Write a program in C to print individual characters of string in reverse order. **Exercise 8:**
- 1. Write a program in C to compare two strings without using string library functions.
- 2. Write a program in C to copy one string to another string. **Exercise 9:**
- 1. Write a C Program to Store Information Using Structures with Dynamically Memory Allocation
- 2. Write a program in C to demonstrate how to handle the pointers in the program.

Exercise 10:

- 1. Write a program in C to demonstrate the use of & (address of) and *(value at address) operator.
- 2. Write a program in C to add two numbers using pointers.

Exercise 11:

- 1. Write a program in C to add numbers using call by reference.
- 2. Write a program in C to find the largest element using Dynamic Memory Allocation. **Exercise 12:**
- 1. Write a program in C to swap elements using call by reference.
- 2. Write a program in C to count the number of vowels and consonants in a string using a pointer.

Exercise 13:

- 1. Write a program in C to show how a function returning pointer.
- Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using malloc() function.
 Exercise 14:
- 1. Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using calloc() function. Understand the difference between the above two programs
- 2. Write a program in C to convert decimal number to binary number using the function. **Exercise 15:**
- 1. Write a program in C to check whether a number is a prime number or not using the function.
- 2. Write a program in C to get the largest element of an array using the function. **Exercise 16:**
- 1. Write a program in C to append multiple lines at the end of a text file.
- 2. Write a program in C to copy a file in another name.
- 3. Write a program in C to remove a file from the disk.

Course Outcomes: By the end of the Lab, the student

- 1) Gains Knowledge on various concepts of a C language.
- 2) Able to draw flowcharts and write algorithms.
- 3) Able design and development of C problem solving skills.
- 4) Able to design and develop modular programming skills.
- 5) Able to trace and debug a program

I Voor I Comostor		L	Т	Р	С			
I Year - I Semester		0	0	3	1.5			
EN	ENGLISH COMMUNICATION SKILLS LABORATORY							

TOPICS

UNIT I:

Vowels, Consonants, Pronunciation, Phonetic Transcription, Common Errors in Pronunciation,

UNIT II:

Word stress-di-syllabic words, poly-syllabic words, weak and strong forms, contrastive stress (Homographs)

UNIT III:

Stress in compound words, rhythm, intonation, accent neutralisation.

UNIT IV:

Listening to short audio texts and identifying the context and specific pieces of information to answer a series of questions in speaking.

UNIT V:

Newspapers reading; Understanding and identifying key terms and structures useful for writing reports.

Prescribed text book: "Infotech English", Maruthi Publications.

References:

- 1. Exercises in Spoken English Part 1,2,3,4, OUP and CIEFL.
- 2. English Pronunciation in use- Mark Hancock, Cambridge University Press.
- 3. English Phonetics and Phonology-Peter Roach, Cambridge University Press.
- 4. English Pronunciation in use- Mark Hewings, Cambridge University Press.
- 5. English Pronunciation Dictionary- Daniel Jones, Cambridge University Press.
- 6. English Phonetics for Indian Students- P. Bala Subramanian, Mac Millan Publications.

IVoor I Comestor		L	Т	Р	С
I Year - I Semester		2	0	0	0
	ENVIRONMENTAL SCIENCE				

Learning Objectives:

The objectives of the course are to impart:

- \Box Overall understanding of the natural resources.
- □ Basic understanding of the ecosystem and its diversity.
- □ Acquaintance on various environmental challenges induced due to unplannedanthropogenicactivities.
- □ An understanding of the environmental impact of developmental activities.
- □ Awareness on the social issues, environmental legislation and global treaties.

UNIT-I:

Multidisciplinary nature of Environmental Studies: Definition, Scope and Importance – Sustainability: Stockholm and Rio Summit–Global Environmental Challenges: Global warming and climate change, acid rains, ozone layer depletion, population growth and explosion, effects;. Role of information technology in environment and human health.

Ecosystems: Concept of an ecosystem. - Structure and function of an ecosystem; Producers, consumers and decomposers. - Energy flow in the ecosystem - Ecological succession. - Food chains, food webs and ecological pyramids; Introduction, types, characteristic features, structure and function of Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems.

UNIT-II:

Natural Resources: Natural resources and associated problems.

Forest resources: Use and over – exploitation, deforestation – Timber extraction – Mining, dams andother effects on forest and tribal people.

Water resources: Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems.

Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources. Food resources: World food problems, changes caused by non-agriculture activities-effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity. Energy resources: Growing energy needs, renewable and non-renewable energy sources use of alternate energy sources.

Land resources: Land as a resource, land degradation, Wasteland reclamation, man induced landslides, soil erosion and desertification; Role of an individual in conservation of natural resources; Equitable use of resources for sustainable lifestyles.

UNIT-III:

Biodiversity and its conservation: Definition: genetic, species and ecosystem diversityclassification - Value of biodiversity: consumptive use, productive use, social-Biodiversity at national and local levels. India as a mega-diversity nation - Hot-sports of biodiversity -Threats to biodiversity: habitat loss, man- wildlife conflicts. - Endangered and endemic species of India – Conservation of biodiversity: conservation of biodiversity.

UNIT – IV Environmental Pollution: Definition, Cause, effects and control measures of Air pollution, Water pollution, Soil pollution, Noise pollution, Nuclear hazards. Role of an individual in prevention of pollution. - Pollution case studies, Sustainable Life Studies. Impact of Fire Crackers on Men and his well being.

Solid Waste Management: Sources, Classification, effects and control measures of urban and industrial solid wastes. Consumerism and waste products, Biomedical, Hazardous and e – waste management.

UNIT - V Social Issues and the Environment: Urban problems related to energy -Water conservation, rain water harvesting - Resettlement and rehabilitation of people; its problems and concerns.

Environmental ethics: Issues and possible solutions. Environmental Protection Act -Air (Prevention and Control of Pollution) Act. –Water (Prevention and control of Pollution) Act -Wildlife Protection Act - Forest Conservation Act-Issues involved in enforcement of environmental legislation. -Public awareness. **Environmental Management**: Impact Assessment and its significance various stages of EIA, preparation of EMP and EIS, Environmental audit. Ecotourism, Green Campus – Green business and Green politics. The student should Visit an Industry / Ecosystem and submit a report individually on any issues related toEnvironmental Studies course and make a power point presentation.

Text Books:

- 1. Environmental Studies, K. V. S. G. Murali Krishna, VGS Publishers, Vijayawada
- 2. Environmental Studies, R. Rajagopalan, 2nd Edition, 2011, Oxford University Press.
- 3. Environmental Studies, P. N. Palanisamy, P. Manikandan, A. Geetha, and K. Manjula Rani; PearsonEducation, Chennai

Reference:

- 1. Text Book of Environmental Studies, Deeshita Dave & P. UdayaBhaskar, Cengage Learning.
- 2. A Textbook of Environmental Studies, Shaashi Chawla, TMH, New Delhi
- 3. Environmental Studies, Benny Joseph, Tata McGraw Hill Co, New Delhi
- 4. Perspectives in Environment Studies, Anubha Kaushik, C P Kaushik, New Age InternationalPublishers, 2014

COURSE STRUCTURE

For UG – R20

B. TECH - MECHANICAL ENGINEERING

(Applicable for batches admitted from 2020-2021)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA - 533 003, Andhra Pradesh, India

COURSE STRUCTURE

I Year – I SEMESTER

Sl. No	Course Code	Subjects	L	Т	Р	Credits
1	BSC-1	Calculus & Differential Equations (M-I)	3	0	0	3
2	BSC-2	Engineering Physics	3	0	0	3
3	ESC-1	Programming for Problem Solving	3	0	0	3
4	HSC-1	Communicative English	3	0	0	3
5	ESC-2	Engineering Drawing	2	0	2	3
6	BSC-L1	Engineering Physics Lab	0	0	3	1.5
7	ESC-L1	Programming for Problem Solving Using C Laboratory	0	0	3	1.5
8	HSC-L1	English Communication Skills Laboratory	0	0	3	1.5
9	MC -1	Environmental Science	2	0	0	0
	Total Credits					19.5

I Year – II SEMESTER

Sl.No	Course Code	Subjects	L	Т	Р	Credits
1	BSC-3	Linear Algebra & Numerical Methods (M-II)	3	0	0	3
2	BSC-4	Engineering Chemistry	3	0	0	3
3	ESC-3	Engineering Mechanics	3	0	0	3
4	ESC-4	Basic Electrical & Electronics Engineering	3	0	0	3
5	ESC-5	Thermodynamics	3	0	0	3
6	ESC-L2	Workshop Practice Lab	0	0	3	1.5
7	BSC-L2	Engineering Chemistry Laboratory	0	0	3	1.5
8	ESC-L3	Basic Electrical & Electronics Engineering Lab	0	0	3	1.5
9	MC-2	Constitution of India	2	0	0	0
	Total Credits					19.5

SUBJECTS FOR B. Tech. (MINOR) in MECHANICAL ENGINEERING

B. Te	ch. (MINOR) in MECHANICAL ENGINEERING	Pre-requisites
1.	Basic Thermodynamics	NIL
2.	Manufacturing Processes	NIL
3.	Materials Science and Engineering	NIL
4.	Basic Mechanical Design	NIL
5.	Optimization Techniques	NIL
6.	Power Plant Engineering	Basic Thermodynamics
7.	Automobile Engineering	Basic Thermodynamics
8.	Industrial Engineering and Management	NIL
9.	Product Design & Development	NIL
10.	Smart Manufacturing	NIL
11.	Mechanical Measurements	NIL
12.	Industrial Robotics	Engineering Mechanics
13.	Mechatronics	NIL

SUBJECTS FOR B. Tech. (HONORS) IN MECHANICAL ENGINEERING

	HONORS IN MECHANICAL ENGINEERING	Pre-requisites
	POOL – 1 (in II-II)	
1.	Advanced Mechanics of Fluids	Fluid Mechanics
2.	Green Manufacturing	Production Technology
3.	Analysis and Synthesis of Mechanisms	Kinematics of Machinery
4.	Alternative Fuels Technologies	Basic Thermodynamics
5.	Gear Engineering	Kinematics of Machinery
	POOL-2 (in III-I)	
1.	Experimental Methods in Fluid Mechanics	Fluid Mechanics
2.	Advanced Optimization Techniques	Operations Research
3.	Micro Electro Mechanical Systems	Nil
4.	Tribology	Nil
5.	Statistical Design in Quality Control	Nil
	POOL-3 (in III-II)	
1.	Advanced Computational Fluid Dynamics	Fluid Mechanics
2.	Material Characterization Techniques	Material Science and Metallurgy
3.	Product Design	Nil
4.	Electric & Hybrid Vehicles	Thermal Engineering
5.	Mechanical Vibrations & Acoustics	Nil
	POOL-4 (in IV-I)	
1.	Advanced Thermodynamics	Nil
2.	Design for Manufacturing and Assembly	Production Technology
3.	Robotics and Control	Kinematics of Machinery
4.	Turbo Machines	FM&HM
5.	Materials Technology	Nil

I Year - II Semester	L	Τ	P	C
	3	0	0	3
			-	

LINEAR ALGEBRA AND NUMERICAL METHODS – M-II

Course Objectives:

- □ To instruct the concept of Matrices in solving linear algebraic equations
- □ To elucidate the different numerical methods to solve nonlinear algebraic equations
- □ To disseminate the use of different numerical techniques for carrying out numerical integration.
- □ To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

Course Outcomes: At the end of the course, the student will be able to

- □ develop the use of matrix algebra techniques that is needed by engineers for practical applications(L6)
- □ solve system of linear algebraic equations using Gauss elimination, Gauss Jordan, GaussSeidel(L3)
- □ evaluate the approximate roots of polynomial and transcendental equations by different algorithms (L5)
- □ apply Newton's forward & backward interpolation and Lagrange's formulae for equal and unequal intervals (L3)
- □ apply numerical integral techniques to different Engineering problems (L3)
- □ apply different algorithms for approximating the solutions of ordinary differential equations withinitial conditions to its analytical computations (L3)

UNIT – I: Solving systems of linear equations, Eigen values and Eigen vectors: (10hrs)

Rank of a matrix by echelon form and normal form – Solving system of homogeneous and non-homogeneous linear equations – Gauss Eliminationmethod – Eigen values and Eigen vectors and properties (article-2.14 in text book-1).

Unit – II: Cayley–Hamilton theorem and Quadratic forms:

Cayley-Hamilton theorem (without proof) – Applications – Finding the inverse and power of a matrix by Cayley-Hamilton theorem – Reduction to Diagonal form – Quadratic forms and nature of the quadratic forms – Reduction of quadratic form to canonical forms by orthogonal transformation.

Singular values of a matrix, singular value decomposition (text book-3).

UNIT – III: Iterative methods:

Introduction–Bisection method–Secant method – Method of false position–Iteration method – Newton- Raphson method (One variable and simultaneous Equations) – Jacobi and Gauss-Seidel methods for solving system of equations numerically.

UNIT – IV: Interpolation:

Introduction– Errors in polynomial interpolation – Finite differences– Forward differences– Backward differences – Central differences – Relations between operators – Newton's forward and backward formulae for interpolation – Interpolation with unequal intervals – Lagrange's interpolation formula– Newton's divide difference formula.

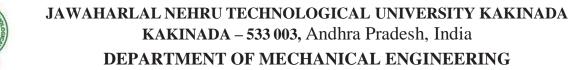
(10 hrs)

ATAKINAD A

(**8 hrs**)

(**10hrs**)

UNIT – V: Numerical differentiation and integration, Solution of ordinary differential equations with initial conditions: (10 hrs)


Numerical differentiation using interpolating polynomial – Trapezoidal rule– Simpson's $1/3^{rd}$ and $3/8^{th}$ rule– Solution of initial value problems by Taylor's series– Picard's method of successive approximations– Euler's method – Runge-Kutta method (second and fourth order).

Text Books:

- 1. **B. S. Grewal**, Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- 2. B. V. Ramana, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.
- 3. David Poole, Linear Algebra- A modern introduction, 4th Edition, Cengage.

Reference Books:

- 1. **Steven C. Chapra,** Applied Numerical Methods with MATLAB for Engineering andScience,Tata Mc. Graw Hill Education.
- 2. M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and EngineeringComputation, New Age International Publications.
- 3. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press.

IVaan II Comestan		L	Т	P	С	
I Year - II Semester		3	0	0	3	
	ENGINEERING CHEMISTRY					

Knowledge of basic concepts of Chemistry for Engineering students will help them asprofessionalengineers later in design and material selection, as well as utilizing the available resources.

COURSE OBJECTIVES

- □ *Importance* of usage of plastics in household appliances and composites (FRP) in aerospace and automotive industries.
- □ *Outline* the basics for the construction of electrochemical cells, batteries and fuel cells.Understand the mechanism of corrosion and how it can be prevented.
- □ *Express* the increases in demand as wide variety of advanced materials are introduced; whichhave excellent engineering properties.

Classify and discuss the materials used in major industries like steel industry, metallurgical industries and construction industries and electrical equipment manufacturing industries. Lubrication is also *summarized*.

- □ *Relate* the need of fuels as a source of energy to any industry, particularly industries like thermal power stations, steel industry, fertilizer industry etc., and hence introduced.
- □ *Explain* the importance and usage of water as basic material in almost all the industries; *interpret*

drawbacks of steam boilers and also how portable water is supplied for drinking purposes.

UNIT I: POLYMER TECHNOLOGY

Polymerisation:- Introduction, methods of polymerization (emulsion and suspension), mechanical properties.

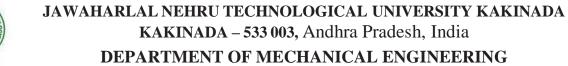
Plastics: Compounding, fabrication (compression, injection, blown film and extrusion), preparation, properties and applications (PVC, polycarbonates and Bakelite), mention some examples of plasticmaterials used in electronic gadgets, recycling of e-plastic waste (waste to wealth).

Elastomers:- Introduction, preparation, properties and applications (Buna S, thiokol and polyurethanes).*Composite materials:* Fiber reinforced plastics, conducting polymers, biodegradable polymers, biopolymers, biomedical polymers.

Course Outcomes: At the end of this unit, the students will be able to

□ *Analyze* the different types of composite plastic materials and *interpret* the mechanism of conduction in conducting polymers.

UNIT II: ELECTROCHEMICAL CELLS AND CORROSION


Single electrode potential, electrochemical series and uses of series, standard hydrogen electrode, calomelelectrode, construction of glass electrode, batteries (Dry cell, Li ion battery and zinc air cells), fuel cells (H₂-O₂, CH₃OH-O₂, phosphoric acid and molten carbonate).

Corrosion:-Definition, theories of corrosion (chemical and electrochemical), galvanic corrosion, differential aeration corrosion, stress corrosion, galvanic series, factors influencing rate of corrosion, corrosion control (proper designing and cathodic protection), Protective coatings (surface preparation, cathodic coatings, anodic coatings, electroplating and electroless plating [nickel]), Paints (constituents, functions and special paints).

8 hrs

10 hrs

10 hrs

Course Outcomes: At the end of this unit, the students will be able to

□ *Utilize* the theory of construction of electrodes, batteries and fuel cells in redesigning new engineering products and *categorize* the reasons for corrosion and study methods to control corrosion.

UNIT III: CHEMISTRY OF MATERIALS Part- A:

Nano materials:- Introduction, sol-gel method, characterization by (Brunauer Emmet Teller [BET]), (scanning electron microscopy [SEM]) and (transmission electron microscopy [TEM]) with example (TiO₂), applications of graphene and fullerenes, carbonnanotubes (types, preparation and applications)*Thermal analysis techniques*: Instrumentation and applications of thermogravimetric analysis (TGA), differential thermal analysis (DTA), differential scanning calorimetry (DSC).

Refractories: - Definition, classification, properties (refractoriness, refractoriness under load, porosityand thermal spalling), failure of refractories.

Lubricants: - Definition, mechanism of lubricants, properties (definition and importance). *Cement:* - Constituents, manufacturing, parameters to characterize the clinker formation: lime saturation factor (LSF), silica ratio (SR) and alumina ratio (AR), chemistry of setting and hardening, deterioration of cement.

Course Outcomes: At the end of this unit, the students will be able to

- □ *Synthesize* nanomaterials for modern advances of engineering technology.
- □ *Summarize* the techniques that detect and measure changes of state of reaction.
- □ *Illustrate* the commonly used industrial materials.

UNIT IV: FUELS

Introduction, calorific value, higher calorific value, lower calorific values, problems using Dulong's formula, proximate and ultimate analysis of coal sample and their significance, numerical problems, petroleum (refining-cracking), synthetic petrol (Fischer Tropsch and Bergius), petrol knocking, diesel knocking, octane and cetane ratings, anti-knocking agents, Introduction to alternative fuels (Bio-diesel,ethanol, methanol, natural gas, liquefied petroleum gas, compressed natural gas), Flue gas analysis by Orsat apparatus, rocket fuels.

Course Outcomes: At the end of this unit, the students will be able to

Differentiate petroleum, petrol, synthetic petrol and have knowledge how they are produced.

□ *Study* alternate fuels and a*nalyse* flue gases.

UNIT V: WATER TECHNOLOGY

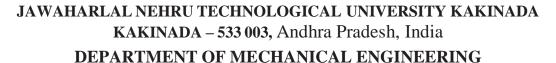
Hardness of water, determination of hardness by complexometric method, boiler troubles (priming and foaming, scale formation, boiler corrosion, caustic embrittlement), internal treatments, softening of hard water (zeolite process and related sums, ion exchange process), treatment of industrial waste water, potable water and its specifications, steps involved in purification of water, chlorination, break point chlorination-desalination (reverse osmosis and electro dialysis).

Course Outcomes: At the end of this unit, the students will be able to

10 hrs

8 hrs

□ *Analyze* the suitable methods for purification and treatment of hard water and brackish water.



Standard Books:

- 1. P.C. Jain and M. Jain "**Engineering Chemistry**", 15/e, Dhanpat Rai & Sons, Delhi,(Latest edition).
- 2. Shikha Agarwal, "Engineering Chemistry", Cambridge University Press, New Delhi, (2019).
- 3. S.S. Dara, "A Textbook of Engineering Chemistry", S.Chand & Co, (2010).
- 4. Shashi Chawla, "Engineering Chemistry", Dhanpat Rai Publicating Co. (Latest edition).

Reference:

- 1. K. Sesha Maheshwaramma and Mridula Chugh, "Engineering Chemistry", Pearson India Edn.
- O.G. Palana, "Engineering Chemistry", Tata McGraw Hill Education Private Limited, (2009).
 CNP Research IM Henric (Eds) "Preparation and characterization of materials". Academic
- 3. CNR Rao and JM Honig (Eds) "**Preparation andcharacterization of materials**" Academic press, New York (latestedition)
- 4. B. S. Murthy, P. Shankar and others, "**Text book of Nano-science and Nanotechnology**", University press (latest edition)

I Year - II Semester		L	Т	Р	С		
1 Tear - 11 Semester		3	0	0	3		
ENIGINEERING MECHANICS							

Objectives: The students completing this course are expected to understand the concepts of forces and its resolution in different planes, resultant of force system, Forces acting on a body, their free body diagrams using graphical methods. They are required to understand the concepts of centre of gravity and moments of inertia and their application, Analysis of frames and trusses, different types of motion, friction and application of work - energy method.

UNIT – I

Objectives: The students are to be exposed to the concepts of force and friction, direction and itsapplication.

Introduction to Engg. Mechanics – Basic Concepts.

Systems of Forces: Coplanar Concurrent Forces – Components in Space – Resultant – Moment of Forceand its Application – Couples and Resultant of Force Systems. **Friction:** Introduction, limiting friction and impending motion, coulomb's laws of dry friction, coefficient of friction, cone of friction

UNIT II

Objectives: The students are to be exposed to application of free body diagrams. Solution toproblems using graphical methods and law of triangle of forces.

Equilibrium of Systems of Forces: Free Body Diagrams, , Lami's Theorm, Equations of Equilibrium of Coplanar Systems, Graphical method for the equilibrium, Triangle law of forces, converse of the law of polygon of forces condition of equilibrium, Equations of Equilibrium for Spatial System of forces, Numerical examples on spatial system of forces using vector approach, Analysis of plane trusses.

$\mathbf{UNIT} - \mathbf{III}$

Objectives : The students are to be exposed to concepts of centre of gravity. The students are to be exposed to concepts of moment of inertia and polar moment of inertia including transfer methods and their applications.

Centroid: Centroids of simple figures (from basic principles) – Centroids of Composite Figures

Centre of Gravity: Centre of gravity of simple body (from basic principles), centre of gravity of composite bodies, Pappus theorems.

Area moments of Inertia: Definition – Polar Moment of Inertia, Transfer Theorem, Moments of Inertia of Composite Figures, Products of Inertia, Transfer Formula for Product of Inertia. **Mass Moment of Inertia:** Moment of Inertia of Masses, Transfer Formula for Mass Moments of Inertia, mass moment of inertia of composite bodies.

$\mathbf{UNIT} - \mathbf{IV}$

Objectives: The students are to be exposed to motion in straight line and in curvilinear paths, its velocity and acceleration computation and methods of representing plane motion.

Rectilinear and Curvilinear motion of a particle: Kinematics and Kinetics- Work Energy method and applications to particle motion- Impulse momentum method.

UNIT – V

Objectives: The students are to be exposed to rigid motion kinematics and kinetics Rigid body Motion: Kinematics and kinetics of translation, Rotation about fixed axis and plane motion, Work Energy method and Impulse momentum method.

TEXT BOOK:

1. Engg. Mechanics - S.Timoshenko & D.H.Young., 4th Edn - , Mc Graw Hill publications.

Course outcomes:

- 1. The student should be able to draw free body diagrams for FBDs for particles and rigid bodies in plane and space and problems to solve the unknown forces, orientations and geometric parameters.
- 2. He should be able to determine centroid for lines, areas and center of gravity for volumes and their composites.
- 3. He should be able to determine area and mass movement of inertia for composite sections
- 4. He should be able to analyze motion of particles and rigid bodies and apply theprinciples of motion, work energy and impulse momentum.

I Year - II Semester	L	Т	P	С
1 Year - 11 Semester	3	0	0	3

BASIC ELECTRICAL & ELECTRONICS ENGINEERING

Preamble:

This course covers the topics related to analysis of various electrical circuits, operation of variouselectrical machines and electronic components to perform wellin their respective fields.

Learning Objectives:

- \Box To learn the basic principles of electrical circuital law's and analysis
- $\hfill\square$ of networks. To understand principle of operation and construction details of DC
- \square machines.

To understand principle of operation and construction details of transformers, alternatorand 3-Phase induction motor.

- □ To study operation of PN junction diode, half wave, full wave rectifiers and OP-AMPs.
- $\hfill\square$ To learn operation of PNP and NPN transistors and various amplifiers.

Unit - I Electrical Circuits

Basic definitions – types of network elements – Ohm's Law – Kirchhoff's Laws – inductive networks – capacitive networks – series – parallel circuits – star-delta and delta-star transformations.-Numerical Problems.

Unit - II DC Machines

Principle of operation of DC generator – EMF equation – types of DC machines – torque equation characteristics of DC motors – applications – three point starter – speed control methods of DC motor – Swinburne's Test-Brake test on DC shunt motor-Numerical problems.

Unit - III AC Machines:

Transformers

Principle of operation and construction of single phase transformers – EMF equation –Losses – OC &SC tests – efficiency and regulation-Numerical Problems.

AC Rotating Machines

Principle of operation and construction of alternators – types of alternators Regulation of alternator by synchronous impedance method – principle of operation of synchronous motor – principle of operation of 3-Phase induction motor – slip-torque characteristics – efficiency – applications- Numerical Problems.

Unit IV Rectifiers & Linear ICs

PN junction diodes – diode applications (half wave and bridge rectifiers). Characteristics of operation amplifiers (OP-AMP) – application of OP-AMPs (inverting, non-inverting, integrator and differentiator)- Numerical Problems.

Unit V Transistors

PNP and NPN junction transistor, transistor as an amplifier– frequency response of CEamplifier – Basicconcepts of feedback amplifier-Numerical problems

Learning Outcomes:

The student should be able to:

- □ Analyse various electrical networks.
- □ Understand operation of DC generators,3-point starter and DC machine testing by Swinburne'sTest and Brake test.
- □ Analyse performance of single-phase transformer and acquire proper knowledge andworking of3-phase alternator and 3-phase induction motors.
- □ Analyse operation of half wave, full wave bridge rectifiers and OP-AMPs.
- □ Understanding operations of CE amplifier and basic concept of feedback amplifier.

Text Books:

- 1. Electrical Technology by Surinder Pal Bali, Pearson Publications.
- 2. Electronic Devices and Circuits by R.L. Boylestad and Louis Nashelsky, 9th edition, PEI/PHI2006.

Reference Books:

- 1. Electrical Circuit Theory and Technology by John Bird, Routledge Taylor & Francis Group
- 2. Basic Electrical Engineering by M.S.Naidu and S.Kamakshiah, TMH Publications
- 3. Fundamentals of Electrical Engineering by Rajendra Prasad, PHI Publications,2nd edition
- 4. Basic Electrical Engineering by Nagsarkar, Sukhija, Oxford Publications, 2nd edition
- 5. Industrial Electronics by G.K. Mittal, PHI

I Voor II Somostor		L	Т	Р	С
I Year - II Semester		3	0	0	3
	THERMODYNAMICS				

Course Objectives:

To impart the knowledge of the thermodynamic laws and principles so as to enable the student to prepare an energy audit of any mechanical system that exchange heat and work with the surroundings.

UNIT – I

Introduction: Basic Concepts : System, boundary, Surrounding, Universe, control volume, Types of Systems, Macroscopic and Microscopic viewpoints, Concept of Continuum, Thermodynamic Equilibrium, State, Property, Process - Reversible, Quasi static & Irreversible Processes, cycle, Causes of Irreversibility. Energy in State and in Transition - Types, Work and Heat, Point and Path function.

Zeroth Law of Thermodynamics – Concept of Temperature – Principles of Thermometry – Reference Points – Const. Volume gas Thermometer – Scales of Temperature.

UNIT – II

Joule's Experiments – First law of Thermodynamics – Corollaries – First law applied to a Process – applied to a flow system –Energy balance for closed systems-Specific heats-Internal energy, Enthalpy and Specific heats of Solids, liquids and Ideal gases, Some steady flow energy equation applied to Nozzle, Turbine, Compressor and heat exchanger devices, PMM-I.

UNIT III

Limitations of the First Law – Thermal Reservoir, Heat Engine, Heat pump, Parameters of performance, Second Law of Thermodynamics, Kelvin-Planck and Clausius Statements and their Equivalence, Corollaries, PMM of Second kind, Carnot cycle and its specialties, Carnot's theorem, Thermodynamic scale of Temperature.

Clausius Inequality, Entropy, Principle of Entropy Increase, Availability and Irreversibility (Basic definitions) – Thermodynamic Potentials, Gibbs and Helmholtz Functions, Maxwell Relations – Elementary Treatment of the Third Law of Thermodynamics.

UNIT IV

Pure Substances, P-V-T- surfaces, T-S and h-s diagrams, Mollier Charts, Phase Transformations – Triple point and critical point, properties during change of phase, Dryness Fraction – Clausius – Clapeyron Equation, Property tables. Various Thermodynamic processes and energy Transfer – Steam Calorimetry.

$\mathbf{UNIT} - \mathbf{V}$

Ideal Gas equation of state- Compressibility factor- Van der Waals equation of state- Beattie-Bridgeman equation of state- Benedict-Webb-Rubin equation of state- Viral equation of state- compressibility charts – variable specific heats .

Mixtures of perfect Gases – Dalton's Law of partial pressure, Avogadro's Laws of additive volumes- Equivalent Gas constant and Molecular Internal Energy, Enthalpy, Specific Heat and Entropy of Mixture of Perfect Gases and Vapour.

Psychrometric Properties – Dry bulb Temperature, Wet Bulb Temperature, Dew point Temperature, Thermodynamic Wet Bulb Temperature, Specific Humidity, Relative Humidity, Saturated Air, Vapour pressure, Degree of saturation – Adiabatic Saturation , Carrier's Equation – Psychrometric chart.

TEXT BOOKS:

- 1. Engineering Thermodynamics, PK Nag 6th Edn, McGraw Hill.
- 2. Fundamentals of Thermodynamics Sonntag, Borgnakke, Van Wylen, 6th Edn, Wiley

REFERENCES:

- 1. Thermodynamics by Prasanna Kumar, Pearson Publishers
- 2. Engineering Thermodynamics Jones & Dugan PHI
- 3. Thermodynamics, an Engineering Approach, Yunus A Cenegel, Michael A Boles, 8th EdninSI Units, McGraw Hill.
- 4. Thermodynamics J.P.Holman, McGrawHill
- 5. An Introduction to Thermodynamics Y.V.C.Rao Universities press.
- 6. Thermodynamics W.Z.Black & J.G.Hartley, 3rd Edn Pearson Publ.
- 7. Engineering Thermodynamics D.P.Misra, Cengage Publ.
- 8. Engineering Thermodynamics P.Chattopadhyay Oxford Higher Edn Publ.

COURSE OUTCOMES:

After undergoing the course the student is expected to

learnCO1: Basic concepts of thermodynamics

- CO2: Laws of thermodynamics
- CO3: Concept of entropy

CO4: Property evaluation of vapors and their depiction in tables and

chartsCO5: Evaluation of properties of perfect gas mixtures.

I Voor - II Somostor		L	Т	Р	C	
I Year - II Semester		0	0	3	1.5	
WORKSHOP PRACTICE LAB						

Course Objective: To impart hands-on practice on basic engineering trades and skills.

Note: At least two exercises to be donefrom each trade.Trade:

1. Carpentry	 T-Lap Joint Cross Lap Joint Dovetail Joint Mortise and Tenon Joint
2. Fitting	 Vee Fit Square Fit Half Round Fit Dovetail Fit
3. Black Smithy	 Round rod to Square S-Hook Round Rod to Flat Ring Round Rod to Square headed bolt
4. House Wiring	 Parallel / Series Connection of three bulbs Stair Case wiring Florescent Lamp Fitting Measurement of Earth Resistance
5. Tin Smithy	 Taper Tray Square Box without lid Open Scoop Funnel
6. IT Workshop	1. Assembly & Disassembly of Computer

I Year - II Semester		L	Т	Р	С
		0	0	3	1.5
	ENGINEERING CHEMISTRY LABORATORY	ζ			

Introduction to Chemistry laboratory – Molarity, normality, primary, secondary standard solutions, volumetric titrations, quantitative analysis

- Determination of HCl using standard Na₂CO₃ solution. 1.
- 2. Determination of alkalinity of a sample containing Na₂CO₃ and NaOH.
- 3. Determination of Mn^{+2} using standard oxalic acid solution.
- 4. Determination of ferrous iron using standard K₂Cr₂O₇ solution.
- 5. Determination of Cu^{+2} using standard hypo solution.
- 6. Determination of temporary and permanent hardness of water using standard EDTA solution.
- 7. Determination of Fe^{+3} by a colorimetric method.
- 8. Determination of the concentration of acetic acid using sodium hydroxide (pH-metrymethod).
- 9. Determination of iso-electric point of amino acids using pH-metry method/conductometric method.
- 10. Determination of the concentration of strong acid vs strong base (by conductometric method).
- Determination of the contentiation of strong acid vs strong base (by contentiation of strong acid vs strong base (by potentiometric method).
 Determination of Mg⁺² present in an antacid.
 Determination of CaCO₃ present in an egg shell.

- 14. Estimation of Vitamin C.
- 15. Determination of phosphoric content in soft drinks.
- 16. Adsorption of acetic acid by charcoal.
- 17. Preparation of nylon-6, 6 and Bakelite (demonstration only).

Of the above experiments at-least 10 assessment experiments should be completed in a semester.

Outcomes: The students entering into the professional course have practically very little exposure to lab classes. The experiments introduce volumetric analysis; redox titrations with different indicators; EDTA titrations; then they are exposed to a few instrumental methods of chemical analysis. Thus at the end of the lab course, the student is exposed to different methods of chemical analysis and use of somecommonly employed instruments. They thus acquire some experimental skills.

Reference Books

1. A Textbook of Quantitative Analysis, Arthur J. Vogel.

	I Year - II Semester	L	Τ	P	С
		0	0	3	1.5

BASIC ELECTRICAL & ELECTRONICS ENGINEERING LAB

Learning Objectives:

- □ To predetermine the efficiency of dc shunt machine using Swinburne's
- □ test.To predetermine the efficiency and regulation of 1-phase transformer with

O.C and S.C tests.

- □ To obtain performance characteristics of DC shunt motor &3-phase induction motor.
- \Box To find out regulation of an alternator with synchronous impedance method.
- □ To control speed of dc shunt motor using Armature voltage and Field flux control methods.
- \Box To find out the characteristics of PN junction diode & transistor
- \Box To determine the ripple factor of half wave & full wave rectifiers.

Section A: Electrical Engineering:

The following experiments are required to be conducted as compulsory experiments:

- 1. Swinburne's test on D.C. Shunt machine (predetermination of efficiency of a given D.C. shuntmachine working as motor and generator).
- 2. OC and SC tests on single phase transformer (predetermination of efficiency and regulation at given power factors).
- 3. Brake test on 3-phase Induction motor (determination of performance characteristics)
- 4. Regulation of alternator by Synchronous impedance method.
- 5. Speed control of D.C. Shunt motor by
- a) Armature Voltage control b) Field flux control method
- 6. Brake test on D.C. Shunt Motor.

Section B: Electronics Engineering:

The following experiments are required to be conducted as compulsory experiments:

- 1. PN junction diode characteristics a) Forward bias b) Reverse bias (Cut in voltage andresistance calculations)
- 2. Transistor CE characteristics (input and output)
- 3. Half wave rectifier with and without filters.
- 4. Full wave rectifier with and without filters.
- 5. CE amplifiers.
- 6. OP- amp applications (inverting, non inverting, integrator and differentiator)

Learning Outcomes:

The student should be able to:

- \Box Compute the efficiency of DC shunt machine without actual loading of the machine.
- □ Estimate the efficiency and regulation at different load conditions and power factors forsinglephase transformer with OC and SC tests.
- □ Analyse the performance characteristics and to determine efficiency of DC shunt motor

&3-Phaseinduction motor..

- \Box Pre-determine the regulation of an alternator by synchronous impedance method.
- □ Control the speed of dc shunt motor using Armature voltage and Field flux control
- $\hfill\square$ methods. Draw the characteristics of PN junction diode & transistor
- Determine the ripple factor of half wave & full wave rectifiers.

I Year - II Semester	 L	Т	P	С
	2	0	0	0

CONSTITUTION OF INDIA

Course Objectives:

- > To Enable the student to understand the importance of constitution
- > To understand the structure of executive, legislature and judiciary
- > To understand philosophy of fundamental rights and duties
- To understand the autonomous nature of constitutional bodies like Supreme Court and high courtcontroller and auditor general of India and election commission of India.
- > To understand the central and state relation financial and administrative.

UNIT-I

Introduction to Indian Constitution: Constitution meaning of the term, Indian Constitution - Sources and constitutional history, Features - Citizenship, Preamble, Fundamental Rights and Duties, Directive Principles of State Policy.

Learning outcomes:

After completion of this unit student will

- Understand the concept of Indian constitution
- Apply the knowledge on directive principle of state policy
- Analyze the History, features of Indian constitution
- Evaluate Preamble Fundamental Rights and Duties

UNIT-II

Union Government and its Administration Structure of the Indian Union: Federalism, Centre- State relationship, President: Role, power and position, PM and Council of ministers, Cabinet and CentralSecretariat, LokSabha, RajyaSabha, The Supreme Court and High Court: Powers and Functions; **Learning outcomes:-**After completion of this unit student will

- Understand the structure of Indian government
- Differentiate between the state and central government
- Explain the role of President and Prime Minister
- Know the Structure of supreme court and High court

UNIT-III

State Government and its Administration Governor - Role and Position - CM and Councilof ministers, State Secretariat: Organisation, Structure and Functions **Learning outcomes:-**After completion of this unit student will

- Understand the structure of state government
- Analyze the role Governor and Chief Minister
- Explain the role of state Secretariat
- Differentiate between structure and functions of state secretariat

UNIT-IV

A.Local Administration - District's Administration Head - Role and Importance, Municipalities - Mayor and role of Elected Representative - CEO of Municipal Corporation PachayatiRaj: Functions PRI: ZilaPanchayat, Elected officials and their roles, CEO ZilaPanchayat: Block level Organizational Hierarchy - (Different departments), Village level - Role of Elected and Appointed officials - Importance of grass root democracy

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

DEPARTMENT OF MECHANICAL ENGINEERING

Learning outcomes:-After completion of this unit student will

- Understand the local Administration
- Compare and contrast district administration role and importance
- Analyze the role of Myer and elected representatives of Municipalities
- Evaluate Zillapanchayat block level organisation

UNIT-V

Election Commission: Election Commission- Role of Chief Election Commissioner and Election Commissionerate State Election Commission:, Functions of Commissions for the welfare of SC/ST/OBC and women

Learning outcomes:-After completion of this unit student will

- Know the role of Election Commission apply knowledge
- Contrast and compare the role of Chief Election commissioner and Commissiononerate
- Analyze role of state election commission
- Evaluate various commissions of viz SC/ST/OBC and women

References:

- 1. Durga Das Basu, Introduction to the Constitution of India, Prentice Hall of India Pvt.Ltd.. NewDelhi
- 2. SubashKashyap, Indian Constitution, National Book Trust
- 3. J.A. Siwach, Dynamics of Indian Government & Politics
- 4. D.C. Gupta, Indian Government and Politics
- 5. H.M.Sreevai, Constitutional Law of India, 4th edition in 3 volumes (Universal Law Publication)
- 6. J.C. Johari, Indian Government and Politics Hans
- 7. J. Raj IndianGovernment and Politics
- 8. M.V. Pylee, Indian Constitution Durga Das Basu, Human Rights in Constitutional Law, Prentice –Hall of India Pvt. Ltd.. New Delhi
- Noorani, A.G., (South Asia Human Rights Documentation Centre), Challenges to CivilRight), Challenges to Civil Rights Guarantees in India, Oxford University Press 2012 E-resources:
- 1. nptel.ac.in/courses/109104074/8
- 2. nptel.ac.in/courses/109104045/
- 3. nptel.ac.in/courses/101104065/
- 4. www.hss.iitb.ac.in/en/lecture-details
- 5. www.iitb.ac.in/en/event/2nd-lecture-institute-lecture-series-indian-constitution

Course Outcomes:

At the end of the semester/course, the student will be able to have a clear knowledge on the following:

- Understand historical background of the constitution making and its importance forbuilding ademocratic India.
- Understand the functioning of three wings of the government ie., executive,legislative andjudiciary.
- > Understand the value of the fundamental rights and duties for becoming good citizen of India.
- > Analyze the decentralization of power between central, state and local self-government.
- Apply the knowledge in strengthening of the constitutional institutions like CAG,ElectionCommission and UPSC for sustaining democracy.
- 1. Know the sources, features and principles of Indian Constitution.
- 2. Learn about Union Government, State government and its administration.
- 3. Get acquainted with Local administration and Pachayati Raj.
- 4. Be aware of basic concepts and developments of Human Rights.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

DEPARTMENT OF MECHANICAL ENGINEERING

5. Gain knowledge on roles and functioning of Election Commission.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE STRUCTURE AND SYLLABUS

For UG – R20

B. TECH - ELECTRONICS AND COMMUNICATION ENGINEERING

(Applicable for batches admitted from 2020-2021)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA - 533 003, ANDHRA PRADESH, INDIA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE STRUCTURE

I Year –I SEMESTER

S. No.	Category	Subjects	L	Т	Р	Credits
1	HS	Communicative English	3	0	0	3
2	BS	Mathematics –I(Calculus)	3	0	0	3
3	BS	Applied Chemistry	3	0	0	3
4	ES	Programming for Problem Solving Using C	3	0	0	3
5	BS	Engineering Drawing	2	0	2	3
6	LC	English Communication Skills Laboratory	0	0	3	1.5
7	LC	Applied Chemistry Lab	0	0	3	1.5
8	LC	Programming for Problem Solving Using C Lab	0	0	3	1.5
Total Credits						19.5

I Year – II SEMESTER

S. No	Category	Subjects	L	Т	Р	Credits
1	BS	Mathematics –II (Linear Algebra and Numerical Methods)	3	0	0	3
2	BS	Applied Physics	3	0	0	3
3	ES	Object Oriented Programming through Java	2	0	2	3
4	ES	Network Analysis	3	0	0	3
5	ES	Basic Electrical Engineering	3	0	0	3
6	LC	Electronic workshop Lab	0	0	3	1.5
7	LC	Basic Electrical Engineering Lab	0	0	3	1.5
8	LC	Applied Physics Lab	0	0	3	1.5
9	МС	Environmental Science	3	0	0	0.0
Total Credits						19.5

II Year –I Semester

S. No	Category	Name of the Subject	L	Т	Р	Credits
1	PC	Electronic Devices and Circuits	3	1	0	3
2	PC	Switching Theory and Logic Design	3	1	0	3
3	PC	Signals and Systems	3	1	0	3
4	BS	Mathematics-III (Transforms and Vector Calculus)	3	1	0	3
5	BS	Random Variables and Stochastic Processes	3	1	0	3
6	LC	OOPS through Java Lab	0	0	2	1.5
7	LC	Electronic Devices and Circuits -Lab	0	0	2	1.5
8	LC	Switching Theory and Logic Design–Lab	0	0	2	1.5
9	SC	Python Programming	0	0 0 4		2
Total Credits						

II Year – II Semester

S. No	Category	Name of the subject	L	Т	Р	Credits
1	PC	Electronic Circuit Analysis	3	1	0	3
2	PC	Digital IC Design	3	1	0	3
3	PC	Analog Communications	3	0	0	3
4	ES	Linear control Systems	3	1	0	3
5	HS	Management and Organizational Behavior	3	0	0	3
6	LC	Electronic Circuit Analysis Lab	0	0	3	1.5
7	LC	Analog Communications Lab	0	0	3	1.5
8	LC	Digital IC Design Lab	0	0	3	1.5
9	SC	Soft Skills	0	0	4	2
10	MC	Constitution of India	3	0	0	0
Total Credits						
Honors/Minor courses (The hours distribution can be 3-0-2 or 3-1-0 also)						

III Year - I Semester								
S. No	Category	Name of the subject	L	Т	Р	Credits		
1	PC	Analog ICs and Applications	3	0	0	3		
2	PC	Electromagnetic Waves and Transmission Lines	3	0	0	3		
3	PC	Digital Communications	3	0	0	3		
4	OE1	Open Elective Course/Job oriented elective-1	2	0	2	3		
5	PE1	Professional Elective courses -1	3	0	0	3		
6	LC	Analog ICs and Applications LAB	0	0	3	1.5		
7	LC	Digital Communications Lab	0	0 3		1.5		
8	SC	Data Structures using Java Lab	0	0	4	2		
9	MC	Indian Traditional Knowledge	2	0	0	0		
Summer Internship 2 Months (Mandatory) after second year (to be evaluated during V semester000								
	Total credits							
	Hono	rs/Minor courses (The hours distribution can be 3-0-2 o	r 3-1-0	also)		4		

<u>PE1:</u>	<u>OE1:</u>
 Antenna and Wave Propagation Electronic Measurements and Instrumentation Computer Architecture & Organization 	Candidate should select the subject from list of subjects offered by other departments

S. No	Category	Name of the subject	L	Т	Р	Credits		
1	PC	Microprocessor and Microcontrollers	3	1	0	3		
2	PC	VLSI Design	3	0	0	3		
3	PC	Digital Signal Processing	3	0	0	3		
4	PE2	Professional Elective courses - 2	3	0	0	3		
5	OE 2	Open Elective Course/Job oriented elective -2	2	0	2	3		
6	LC	Microprocessor and Microcontrollers - Lab	0	0	3	1.5		
7	LC	VLSI Design Lab	0	0 3		1.5		
8	LC	Digital Signal Processing Lab	0	0	3	1.5		
9	SC	ARM based/ Aurdino based Programming	1	0	2	2		
10	MC	Research Methodology	2	0	0	0		
	Total credits							
	Honors/Minor courses (The hours distribution can be 3-0-2 or 3-1-0 also)							

III Year –II Semester

Industrial/Research Internship (Mandatory) 2 Months during summer vacation

	PE2:	
--	-------------	--

OE2:

 Microwave Engineering Mobile & Cellular Communication Embedded Systems CMOS Analog IC Design 	Candidate should select the subject from list of subjects offered by other departments
---	--

S. No	Category	Name of the subject	L	Т	Р	Credits	
1	PE	Professional Elective courses -3	3	0	0	3	
2	PE	Professional Elective courses -4	3	0	0	3	
3	PE	Professional Elective courses -5	3	0	0	3	
4	OE	Open Elective Courses/ Job oriented elective -3	2	0	2	3	
5	OE	Open Elective Courses/ Job oriented elective -4	2	0	2	3	
6	HS	*Humanities and Social Science Elective	3	0	0	3	
7	SC	Designer tools (HFSS, Microwave Studio CST. Cadence Virtuoso. Synopsys, Mentor Graphics, Xilinx.)1		0	2	2	
Industrial/Research Internship 2 Months (Mandatory) afterthird year (to be evaluated during VII semester000						3	
	Total credits						
Honors/Minor courses (The hours distribution can be 3-0-2 or 3-1-0 also)							

<u>PE 3:</u>	<u>PE5:</u>
1. Optical Communication 2. Digital Image Processing 3. Low Power VLSI Design	1. Radar engineering 2.Pattern recognition & Machine Learning 3.Internet of Things
<u>PE4:</u> 1.Satellite Communications 2.Soft Computing Techniques 3.Digital IC Design using CMOS	

IV Year – II Semester

S. No.	Category	Code	Course Title	Hours per week			Credits
1	Major Project	PROJ	Project work, seminar and internship inindustry	-	-	-	12
INTERNSHIP (6 MONTHS)							
Total credits						12	

SUBJECTS FOR HONORS

POOL-1

Instrumentation and Control Systems: (any four of the following subjects which are not chosen as professional electives are to be considered for Honors Degree)

S. No.	Subject	L-T-P	Credits	
1	Data Acquisition systems	3-1-0	4	
2	Adaptive Control Systems	3-1-0	4	
3	Bio-Medical Instrumentation	3-1-0	4	
4	Digital Control Systems	3-1-0	4	
5	Process Control Instrumentation	3-1-0	4	
6	Transducers & sensors	3-1-0	4	
7	MEMS	3-1-0	4	
8	Intelligent & Smart Instrumentation	3-1-0	4	
In addition to any of the four subjects, MOOC/NPTEL Courses for 04 credits (02				
courses@ 2 credits each) are compulsory in the domain of Electronics and				
Commu	Communication Engineering			

POOL-2

Integrated circuits and Systems: (any four of the following subjects which are not chosen asprofessional electives are to be considered for Honors Degree)

S. No	Subject	L-T-P	Credits	
1	VLSI Technology and Design	3-1-0	4	
2	CMOS Analog IC Design	3-1-0	4	
3	CMOS Digital IC design	3-1-0	4	
4	Design for Testability	3-1-0	4	
5	System on Chip	3-1-0	4	
6	Programmable Logic Devices and ASIC	3-1-0	4	
7	Scripting Language	3-1-0	4	
8	Low Power VLSI Design	3-1-0	4	
In addition to any of the four subjects, MOOC/NPTEL Courses for 04 credits (02				
courses@ 2 credits each) are compulsory in the domain of Electronics and				
Communication Engineering				

POOL-3

Communication Engineering: (any four of the following subjects which are not chosen as a professional electives are to be considered for Honors Degree)

S. No	Subject	L-T-P	Credits	
1	Wireless Sensor Networks	3-1-0	4	
2	Software defined radio	3-1-0	4	
3	Data Communications & Computer Networks		4	
4	4 Cognitive radio		4	
5	5G Communications	3-1-0	4	
6	Satellite communication	3-1-0	4	
7	Optical Communication	3-1-0	4	
8	Global navigational satellite systems	3-1-0	4	
In addition to any of the four subjects, MOOC/NPTEL Courses for 04 credits (02				
courses@ 2 credits each) are compulsory in the domain of Electronics and				
Communication Engineering				

POOL-4

Digital Signal processing (any four of the following subjects which are not chosen as professional electives are to be considered for Honors Degree)

S. No	Subject	L-T-P	Credits
1	Speech Signal Processing	3-1-0	4
2	Video Signal Processing	3-1-0	4
3	Adaptive Signal Processing	3-1-0	4
4	Bio- Medical Signal Processing	3-1-0	4
5	DSP Processors and Architectures	3-1-0	4
6	Wavelet Theory	3-1-0	4
7	Multirate Systems And Filter Banks	3-1-0	4
8	Mathematical methods for signal processing	3-1-0	4
In addition to any of the four subjects Compulsory MOOC/NPTEL Courses for 04 credits (02 courses@ 2 credits each)			

GENERAL MINOR TRACKS

S. No.	Subject	L-T-P	Credits	
1	Electronics Devices and Basic Circuits	3-1-0	4	
2	Digital Electronics	3-1-0	4	
3	Principles of Communication	3-1-0	4	
4	Signal Analysis	3-1-0	4	
In addition to any of the four subjects, MOOC/NPTEL Courses for 04 credits (02 courses@ 2 credits each) are compulsory in the domain of Electronics and Communication Engineering				

List of the **OPEN ELECTIVES** offered by **ECE** Department to **other Branches**:

- 1. Basics of Signals and Systems
- 2. Electronic Measurements and Instrumentation
- 3. Principles of Signal Processing
- 4. Industrial Electronics
- 5. Consumer Electronics
- 6. Fundamentals of Microprocessors and Microcontrollers
- 7. Transducers and Sensors
- 8. IOT and Applications
- 9. Soft Computing Techniques
- 10. IC Applications
- 11. Principles of Communications
- 12. Basic Electronics
- 13. Data Communications
- 14. Digital Logic design
- 15. Remote Sensing and GIS
- 16. Bio Medical Instrumentation

I Year - I Semester		L	Т	P	C		
		3	0	0	3		
COMMUNICATIVE ENGLISH							

Introduction

The course is designed to train students in receptive (listening and reading) as well as productive and interactive (speaking and writing) skills by incorporating a comprehensive, coherent and integrated approach that improves the learners' ability to effectively use English language in academic/ workplace contexts. The shift is from *learning about the language* to *using the language*. On successful completion of the compulsory English language course/s in B.Tech., learners would be confident of appearing for international language qualification/proficiency tests such as IELTS, TOEFL, or BEC, besides being able to express themselves clearly in speech and competently handle the writing tasks and verbal ability component of campus placement tests. Activity based teaching-learning methods would be adopted to ensure that learners would engage in actual use of language both in the classroom and laboratory sessions.

Course Objectives

- Facilitate effective listening skills for better comprehension of academic lectures and English spoken by native speakers
- ➤ Focus on appropriate reading strategies for comprehension of various academic texts and authentic materials
- ➤ Help improve speaking skills through participation in activities such as role plays, discussions and structured talks/oral presentations
- Impart effective strategies for good writing and demonstrate the same in summarizing, writing well organized essays, record and report useful information
- Provide knowledge of grammatical structures and vocabulary and encourage their appropriate use in speech and writing

Learning Outcomes

At the end of the module, the learners will be able to

- understand social or transactional dialogues spoken by native speakers of English and identify the context, topic, and pieces of specific information
- > ask and answer general questions on familiar topics and introduce oneself/others
- employ suitable strategies for skimming and scanning to get the general idea of a text and locate specific information
- > recognize paragraph structure and be able to match beginnings/endings/headings with paragraphs
- ➢ form sentences using proper grammatical structures and correct word forms

Unit 1: Lesson-1: A Drawer full of happiness from "Infotech English", Maruthi Publications

Lesson-2: Deliverance by Premchand from "The Individual Society", Pearson Publications. (Non-detailed)

Listening: Listening to short audio texts and identifying the topic. Listening to prose, prose and conversation.

Speaking: Asking and answering general questions on familiar topics such as home, family, work, studies and interests. Self introductions and introducing others.

Reading: Skimming text to get the main idea. Scanning to look for specific pieces of information.

Reading for Writing: Paragraph writing (specific topics) using suitable cohesive devices; linkers, sign posts and transition signals; mechanics of writing - punctuation, capital letters.

Vocabulary: Technical vocabulary from across technical branches (20) GRE Vocabulary (20) (Antonyms and Synonyms, Word applications) Verbal reasoning and sequencing of words.

Grammar: Content words and function words; word forms: verbs, nouns, adjectives and adverbs; nouns: countables and uncountables; singular and plural basic sentence structures; simple question form - wh-questions; word order in sentences.

Pronunciation: Vowels, Consonants, Plural markers and their realizations

<u>Unit 2:</u>

Lesson-1: Nehru's letter to his daughter Indira on her birthday from "Infotech English", Maruthi Publications

Lesson-2: Bosom Friend by Hira Bansode from "The Individual Society", Pearson Publications.(Nondetailed)

Listening: Answering a series of questions about main idea and supporting ideas after listening to audio texts, both in speaking and writing.

Speaking: Discussion in pairs/ small groups on specific topics followed by short structured talks. Functional English: Greetings and leave takings.**Reading**: Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together.

Reading for Writing: Summarizing - identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions.

Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary Analogies (20 words) (Antonyms and Synonyms, Word applications)

Grammar: Use of articles and zero article; prepositions.

Pronunciation: Past tense markers, word stress-di-syllabic words

<u>Unit 3:</u>

Lesson-1: Stephen Hawking-Positivity 'Benchmark' from "Infotech English", Maruthi Publications

Lesson-2: Shakespeare's Sister by Virginia Woolf from "The Individual Society", Pearson Publications.(Non-detailed)

Listening:Listening for global comprehension and summarizing what is listened to, both in speaking and writing.

Speaking: Discussing specific topics in pairs or small groups and reporting what is discussed.Functional English:Complaining and Apologizing.

Reading: Reading a text in detail by making basic inferences - recognizing and interpreting specific context clues; strategies to use text clues for comprehension.Critical reading.

Reading for Writing: Summarizing - identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions. Letter writing-types, format and principles of letter writing.E-mail etiquette, Writing CV's.

Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Association, sequencing of words

Grammar: Verbs - tenses; subject-verb agreement; direct and indirect speech, reporting verbs for academic purposes.

Pronunciation: word stress-poly-syllabic words.

<u>Unit 4:</u>

Lesson-1: Liking a Tree, Unbowed: Wangari Maathai-biography from **"Infotech English**", Maruthi Publications

Lesson-2: Telephone Conversation-Wole Soyinka from "The Individual Society", Pearson Publications.(Non-detailed)

Listening: Making predictions while listening to conversations/ transactional dialogues without video (only audio); listening to audio-visual texts.

Speaking: Role plays for practice of conversational English in academic contexts (formal and informal) - asking for and giving information/directions.Functional English: Permissions, Requesting, Inviting.

Reading: Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicative process or display complicated data.

Reading for Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables.Writing SOP, writing for media.

Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters.

Grammar: Quantifying expressions - adjectives and adverbs; comparing and contrasting; degrees of comparison; use of antonyms

Pronunciation: Contrastive Stress

Unit 5:

Lesson-1: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications

Lesson-2: Still I Rise by Maya Angelou from "The Individual Society", Pearson Publications.(Non-detailed)

Listening: Identifying key terms, understanding concepts and interpreting the concepts both in speaking and writing.

Speaking: Formal oral presentations on topics from academic contexts - without the use of PPT slides.Functional English: Suggesting/Opinion giving.

Reading: Reading for comprehension. RAP StrategyIntensive reading and Extensive reading techniques. **Reading for Writing**: Writing academic proposals- writing research articles: format and style. **Vocabulary**: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, matching emotions.

Grammar: Editing short texts – identifying and correcting common errors in grammar and usage (articles, prepositions, tenses, subject verb agreement)

Pronunciation: Stress in compound words **Prescribed text books for theory for Semester-I**:

1. "Infotech English", Maruthi Publications. (Detailed)

2."The Individual Society", Pearson Publications.(Non-detailed)

Prescribed text book for Laboratory for Semesters-I & II:

1. "Infotech English", Maruthi Publications. (with Compact Disc)

Reference Books:

- Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- Chase, Becky Tarver. *Pathways: Listening, Speaking and Critical Thinking*. Heinley ELT; 2nd Edition, 2018.
- Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.

I Voor I Comostor	L	Т	Р	С
I Year - I Semester	3	0	0	3

MATHEMATICS-I

Course Objectives:

- This course will illuminate the students in the concepts of calculus.
- To enlighten the learners in the concept of differential equations and multivariable calculus.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

Course Outcomes:

At the end of the course, the student will be able to

- Utilize mean value theorems to real life problems (L3)
- Solve the differential equations related to various engineering fields (L3)
- Familiarize with functions of several variables which is useful in optimization (L3)
- Apply double integration techniques in evaluating areas bounded by region (L3)
- Students will also learn important tools of calculus in higher dimensions. Students will become familiar with 2- dimensional and 3-dimensional coordinate systems (L5)

UNIT I: Sequences, Series and Mean value theorems: (10 hrs) Sequences and Series: Convergences and divergence – Ratio test – Comparison tests – Integral test – Cauchy's root test – Alternate series – Leibnitz's rule.

Mean Value Theorems (without proofs): Rolle's Theorem – Lagrange's mean value theorem – Cauchy's mean value theorem – Taylor's and Maclaurin's theorems with remainders.

UNIT II: Differential equations of first order and first degree: (10 hrs) Linear differential equations – Bernoulli's equations – Exact equations and equations reducible to exact form.

Applications: Newton's Law of cooling – Law of natural growth and decay – Orthogonal trajectories – Electrical circuits.

UNIT III: Linear differential equations of higher order: (10 hrs) Non-homogeneous equations of higher order with constant coefficients – with non-homogeneous term of the type e^{ax} , sin ax, cos ax, polynomials in x^n , $e^{ax} V(x)$ and $x^n V(x)$ – Method of Variation of parameters. Applications: LCR circuit, Simple Harmonic motion.

UNIT IV: Partial differentiation: (10 hrs) Introduction – Homogeneous function – Euler's theorem – Total derivative – Chain rule – Jacobian – Functional dependence – Taylor's and Mc Laurent's series expansion of functions of two variables.

Applications: Maxima and Minima of functions of two variables without constraints and Lagrange's method (with constraints).

UNIT V: Multiple integrals:

(8 hrs)

Double and Triple integrals – Change of order of integration – Change of variables. Applications: Finding Areas and Volumes.

Text Books:

- 1) B. S. Grewal, Higher Engineering Mathematics, 43rd Edition, Khanna Publishers.
- 2) B. V. Ramana, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

Reference Books:

- 1) Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India.
- 2) Joel Hass, Christopher Heil and Maurice D. Weir, Thomas calculus, 14th Edition, Pearson.
- 3) Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 2013.
- 4) Srimantha Pal, S C Bhunia, Engineering Mathematics, Oxford University Press.

I Year - I Semester		L	Т	P	С
1 Tear - I Semester		3	0	0	3
	APPLIED CHEMISTRY				

Knowledge of basic concepts of Chemistry for Engineering students will help them as professional engineers later in design and material selection, as well as utilizing the available resources.

COURSE OBJECTIVES

- Importance of usage of plastics in household appliances and composites (FRP) in aerospace and automotive industries.
- *Outline* the basics for the construction of electrochemical cells, batteries and fuel cells. Understand the mechanism of corrosion and how it can be prevented.
- *Explain* the preparation of semiconductors and nanomaterials, engineering applications of nanomaterials, superconductors and liquid crystals.
- **Recall** the increase in demand for power and hence alternative sources of power are studied due to depleting sources of fossil fuels. Advanced instrumental techniques are introduced.
- *Outline* the basics of computational chemistry and molecular switches

UNIT I: POLYMER TECHNOLOGY

Polymerisation:- Introduction, methods of polymerization (emulsion and suspension), mechanical properties.

Plastics: Compounding, fabrication (compression, injection, blown film and extrusion), preparation, properties and applications (PVC, polycarbonates and Bakelite), mention some examples of plastic materials used in electronic gadgets, recycling of e-plastic waste (waste to wealth).

Elastomers:- Introduction, preparation, properties and applications (Buna S, thiokol and polyurethanes).

Composite materials: Fiber reinforced plastics, conducting polymers, biodegradable polymers, biopolymers, biomedical polymers.

Course Outcomes: At the end of this unit, the students will be able to

Analyze the different types of composite plastic materials and *interpret* the mechanism of conduction • in conducting polymers.

UNIT II: ELECTROCHEMICAL CELLS AND CORROSION

Single electrode potential, electrochemical series and uses of series, standard hydrogen electrode, calomel electrode, construction of glass electrode, batteries (Dry cell, Li ion battery and zinc air cells), fuel cells (H₂-O₂, CH₃OH-O₂, phosphoric acid and molten carbonate).

Corrosion:-Definition, theories of corrosion (chemical and electrochemical), galvanic corrosion, differential aeration corrosion, stress corrosion, galvanic series, factors influencing rate of corrosion, corrosion control (proper designing and cathodic protection), Protective coatings (surface preparation, cathodic coatings, anodic coatings, electroplating and electroless plating [nickel]), Paints (constituents, functions and special paints).

Course Outcomes: At the end of this unit, the students will be able to

• Utilize the theory of construction of electrodes, batteries and fuel cells in redesigning new engineering products and categorize the reasons for corrosion and study methods to control corrosion.

8 hrs

10 hrs

UNIT III: MATERIAL CHEMISTRY

Part I : *Non-elementalsemiconducting materials:*- Stoichiometric, controlled valency & chalcogen photo/semiconductors-preparation of semiconductors (distillation, zone refining, Czochralski crystal pulling, epitaxy, diffusion, ion implantation) - Semiconductor devices (p-n junction diode as rectifier, junction transistor).

Insulators & magnetic materials: electrical insulators-ferro and ferri magnetism-Hall effect and its applications.

Part II:

Nano materials:- Introduction, sol-gel method, characterization by (Brunauer Emmet Teller [BET]), (scanning electron microscopy [SEM]) and (transmission electron microscopy [TEM]), applications of graphene and fullerenes, carbon nanotubes (types, preparation and applications)

Liquid crystals:- Introduction-types-applications.

Super conductors:-Type -I, Type II-characteristics and applications

Course Outcomes: At the end of this unit, the students will be able to

- Synthesize nanomaterials for modern advances of engineering technology.
- *Summarize the* preparation of semiconductors; analyze the applications of liquid crystals and superconductors.

UNIT IV:

SPECTROSCOPIC TECHNIQUES &NON-CONVENTIONAL ENERGY SOURCES 10 hrs

Part A: SPECTROSCOPIC TECHNIQUES

Electromagnetic spectrum-UV (laws of absorption, instrumentation, theory of electronic spectroscopy, Frank-condon principle, chromophores and auxochromes, intensity shifts, applications), FT-IR [instrumentation and differentiation of sp, sp², sp³ and IR stretching of functional groups (alcohols, carbonyls, amines) applications], magnetic resonance imaging and CT scan (procedure & applications).

Part B: NON-CONVENTIONAL ENERGY SOURCES

Design, working, schematic diagram, advantages and disadvantages of photovoltaic cell, hydropower, geothermal power, tidal and wave power, ocean thermal energy conversion.

Course Outcomes: At the end of this unit, the students will be able to

- Analyze the principles of different analytical instruments and their applications.
- *Design* models for energy by different natural sources.

UNIT V: ADVANCED CONCEPTS/TOPICS IN CHEMISTRY

Computational chemistry: Introduction to computational chemistry, molecular modelling and docking studies

Molecular switches: characteristics of molecular motors and machines, Rotaxanes and Catenanes as artificial molecular machines, prototypes – linear motions in rotaxanes, an acid-base controlled molecular shuttle, a molecular elevator, an autonomous light-powered molecular motor

Course Outcomes: At the end of this unit, the students will be able to

• *Obtain* the knowledge of computational chemistry and molecular machines

10 hrs

ATAKINADA

A AKINADA Balg Bland

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Standard Books:

- 1. P.C. Jain and M. Jain "Engineering Chemistry", 15/e, Dhanpat Rai & Sons, Delhi, (Latest edition).
- 2. Shikha Agarwal, "Engineering Chemistry", Cambridge University Press, New Delhi, (2019).
- 3. S.S. Dara, "A Textbook of Engineering Chemistry", S.Chand & Co, (2010).
- 4. Shashi Chawla, "Engineering Chemistry", Dhanpat Rai Publicating Co. (Latest edition).

Reference:

- 1. K. Sesha Maheshwaramma and Mridula Chugh, "Engineering Chemistry", Pearson India Edn.
- 2. O.G. Palana, "Engineering Chemistry", Tata McGraw Hill Education Private Limited, (2009).
- 3. CNR Rao and JM Honig (Eds) "**Preparation and characterization of materials**" Academic press, New York (latest edition)
- 4. B. S. Murthy, P. Shankar and others, "**Textbook of Nanoscience and Nanotechnology**", University press (latest edition)

I Voor I Somoston		L	Т	Р	С
I Year - I Semester		3	0	0	3
PF	OGRAMMING FOR PROBLEM SOLVING	USING	С		

COURSE OBJECTIVES:

The objectives of Programming for Problem Solving Using C are

- To learn about the computer systems, computing environments, developing of a computer program and Structure of a CProgram
- To gain knowledge of the operators, selection, control statements and repetition inC
- To learn about the design concepts of arrays, strings, enumerated structure and union types. To learn about their usage.
- To assimilate about pointers, dynamic memory allocation and know the significance of Preprocessor.
- To assimilate about File I/O and significance of functions

UNIT I

Introduction to Computers: Creating and running Programs, Computer Numbering System, Storing Integers, Storing Real Numbers

Introduction to the C Language: Background, C Programs, Identifiers, Types, Variable, Constants, Input/output, Programming Examples, Scope, Storage Classes and Type Qualifiers. **Structure of a C Program:** Expressions Precedence and Associativity, Side Effects, Evaluating Expressions, Type Conversion Statements, Simple Programs, Command Line Arguments.

UNIT II

Bitwise Operators: Exact Size Integer Types, Logical Bitwise Operators, Shift Operators. **Selection & Making Decisions:** Logical Data and Operators, Two Way Selection, Multiway Selection, More Standard Functions

Repetition: Concept of Loop, Pretest and Post-test Loops, Initialization and Updating, Event and Counter Controlled Loops, Loops in C, Other Statements Related to Looping, Looping Applications, Programming Examples

UNIT III

Arrays: Concepts, Using Array in C,ArrayApplication, Two DimensionalArrays, Multidimensional Arrays, Programming Example –CalculateAverages

Strings: String Concepts, C String, String Input / Output Functions, Arrays of Strings, String Manipulation Functions String/ Data Conversion, A Programming Example – Morse Code **Enumerated, Structure, and Union:** The Type Definition (Type-def), Enumerated Types, Structure, Unions, and Programming Application

UNIT IV

Pointers: Introduction, Pointers to pointers, Compatibility, L value and R value **Pointer Applications:** Arrays, and Pointers, Pointer Arithmetic and Arrays, Memory Allocation Function, Array of Pointers, Programming Application **Processor Commands**: Processor Commands

UNIT V

Functions: Designing, Structured Programs, Function in C, User Defined Functions, Inter-Function Communication, Standard Functions, Passing Array to Functions, Passing Pointers to Functions, Recursion

Text Input / Output: Files, Streams, Standard Library Input / Output Functions, Formatting Input / Output Functions, Character Input / Output Functions

Binary Input / **Output:** Text versus Binary Streams, Standard Library, Functions for Files, Converting File Type.

TEXT BOOKS:

- 1. Programming for Problem Solving, Behrouz A. Forouzan, Richard F.Gilberg, CENGAGE
- 2. The C Programming Language, Brian W.Kernighan, Dennis M. Ritchie, 2e, Pearson

REFERENCES:

- 1. Computer Fundamentals and Programming, Sumithabha Das, McGrawHill
- 2. Programming in C, Ashok N. Kamthane, AmitKamthane, Pearson
- 3. Computer Fundamentals and Programming in C, PradipDey, ManasGhosh,OXFORD

COURSE OUTCOMES:

Upon the completion of the course the student will learn

- To write algorithms and to draw flowcharts forsolvingproblems
- To convert flowcharts/algorithms to C Programs, compile and debugprograms
- To use different operators, data types and write programs that use two-way/ multiway selection
- To select the best loop construct for agivenproblem
- To design and implement programs to analyze the different pointer applications
- To decompose a problem into functions and to develop modularreusablecode
- To apply FileI/Ooperations.

ALANADA AMARINADA AMARINADA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

I Year - I Semester		L	Т	Р	С
1 Year - I Semester		2	0	2	3
	ENCINEERING DRAWING				

Course Objective:

Engineering drawing being the principal method of communication for engineers, the objective is to introduce the students, the techniques of constructing the various types of polygons, curves and scales. The objective is also to visualize and represent the 3D objects in 2D planes with proper dimensioning, scaling etc.

Unit I

Objective: To introduce the students to use drawing instruments and to draw polygons, Engg. Curves.

Polygons: Constructing regular polygons by general methods, inscribing and describing polygons on circles.

Curves: Parabola, Ellipse and Hyperbola by general and special methods, cycloids, involutes, tangents & normals for the curves.

Scales: Plain scales, diagonal scales and vernier scales

Unit II

Objective: To introduce the students to use orthographic projections, projections of points & simple lines. To make the students draw the projections of the lines inclined to both the planes.

Orthographic Projections: Reference plane, importance of reference lines, projections of points in various quadrants, projections of lines, line parallel to both the planes, line parallel to one plane and inclined to other plane.

Projections of straight lines inclined to both the planes, determination of true lengths, angle of inclination and traces.

Unit III

Objective: The objective is to make the students draw the projections of the plane inclined toboth the planes.

Projections of planes: regular planes perpendicular/parallel to one reference plane and inclined to the other reference plane; inclined to both the reference planes.

Unit IV

Objective: The objective is to make the students draw the projections of the various types of solids in different positions inclined to one of the planes.

Projections of Solids – Prisms, Pyramids, Cones and Cylinders with the axis inclined to both the planes.

Unit V

Objective: The objective is to represent the object in 3D view through isometric views. The student will be able to represent and convert the isometric view to orthographic view and vice versa.

Conversion of isometric views to orthographic views; Conversion of orthographic views to isometric views.

Computer Aided Design, Drawing practice using Auto CAD, Creating 2D&3D drawings of objects using Auto CAD

Note: In the End Examination there will be no question from CAD.

TEXT BOOKS:

- 1. Engineering Drawing by N.D. Butt, Chariot Publications
- 2. Engineering Drawing by Agarwal & Agarwal, Tata McGraw Hill Publishers

REFERENCE BOOKS:

- 1. Engineering Drawing by K.L.Narayana & P. Kannaiah, Scitech Publishers
- 2. Engineering Graphics for Degree by K.C. John, PHI Publishers
- 3. Engineering Graphics by PI Varghese, McGrawHill Publishers
- 4. Engineering Drawing + AutoCad K Venugopal, V. Prabhu Raja, New Age

Course Outcome: The student will learn how to visualize 2D & 3D objects.

I Voon I Someston	L	Т	P	С
I Year - I Semester	0	0	3	1.5
ENCLISH COMMUNICATION	SKILLSLABODATODY	7		

TOPICS

UNIT I:

Vowels, Consonants, Pronunciation, Phonetic Transcription, Common Errors in Pronunciation,

UNIT II:

Word stress-di-syllabic words, poly-syllabic words, weak and strong forms, contrastive stress (Homographs)

UNIT III:

Stress in compound words, rhythm, intonation, accent neutralisation.

UNIT IV:

Listening to short audio texts and identifying the context and specific pieces of information toanswer a series of questions in speaking.

UNIT V:

Newspapers reading;Understanding and identifying key terms and structures useful for writing reports.

Prescribed text book: "Infotech English", Maruthi Publications.

References:

- 1. Exercises in Spoken English Part 1,2,3,4, OUP and CIEFL.
- 2. English Pronunciation in use- Mark Hancock, Cambridge University Press.
- 3. English Phonetics and Phonology-Peter Roach, Cambridge University Press.
- 4. English Pronunciation in use- Mark Hewings, Cambridge University Press.
- 5. English Pronunciation Dictionary- Daniel Jones, Cambridge University Press.
- 6. English Phonetics for Indian Students- P. Bala Subramanian, Mac Millan Publications.

ALARINADA ALARINADA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

I Year - I Semester	L	Т	Р	С
1 Year - I Semester	0	0	3	1.5

APPLIED CHEMISTRY LAB

Introduction to Chemistry laboratory – Molarity, normality, primary, secondary standard solutions, volumetric titrations, quantitative analysis

- 1. Determination of HCl using standard Na₂CO₃ solution.
- 2. Determination of alkalinity of a sample containing Na₂CO₃ and NaOH.
- 3. Determination of Mn⁺² using standard oxalic acid solution.
- 4. Determination of ferrous iron using standard K₂Cr₂O₇ solution.
- 5. Determination of Cu^{+2} using standard hypo solution.
- 6. Determination of temporary and permanent hardness of water using standard EDTA solution.
- 7. Determination of Fe^{+3} by a colorimetric method.
- 8. Determination of the concentration of acetic acid using sodium hydroxide (pH-metry method).
- 9. Determination of iso-electric point of amino acids using pH-metry method/conductometric method.
- 10. Determination of the concentration of strong acid vs strong base (by conductometric method).
- 11. Determination of strong acid vs strong base (by potentiometric method).
- 12. Determination of Mg⁺² presentin an antacid.
- 13. Determination of CaCO₃ present in an egg shell.
- 14. Estimation of Vitamin C.
- 15. Determination of phosphoric content in soft drinks.
- 16. Adsorption of acetic acid by charcoal.
- 17. Preparation of nylon-6, 6 and Bakelite (demonstration only).

Of the above experiments at-least 10 assessment experiments should be completed in a semester.

Outcomes: The students entering into the professional course have practically very little exposure to lab classes. The experiments introduce volumetric analysis; redox titrations with different indicators; EDTA titrations; then they are exposed to a few instrumental methods of chemical analysis. Thus at the end of the lab course, the student is exposed to different methods of chemical analysis and use of some commonly employed instruments. They thus acquire some experimental skills.

Reference Books

1. A Textbook of Quantitative Analysis, Arthur J. Vogel.

I Year - I Semester	L	Т	Р	С	
1 Year - I Semester		0	0	3	1.5

PROGRAMMING FOR PROBLEM SOLVING USING C LAB

Course Objectives:

- 1) Apply the principles of C language inproblemsolving.
- 2) To design flowcharts, algorithms and knowing how todebugprograms.
- 3) To design & develop of C programs using arrays, strings pointers&functions.
- 4) To review the file operations, preprocessor commands.

Exercise 1:

- 1. Write a C program to print a block F using hash (#), where the F has a height of six characters and width of five and four characters.
- 2. Write a C program to compute the perimeter and area of a rectangle with a height of 7 inches and width of 5 inches.
- 3. Write a C program to displaymultiplevariables.

Exercise 2:

- 1. Write a C program to calculate the distance between thetwopoints.
- 2. Write a C program that accepts 4 integers p, q, r, s from the user where r and s are positive and p is even. If q is greater than r and s is greater than p and if the sum of r and s is greater than the sum of p and q print "Correct values", otherwise print "Wrongvalues".

Exercise 3:

- 1. Write a C program to convert a string to alonginteger.
- 2. Write a program in C which is a Menu-Driven Program to compute the area of the variousgeometricalshape.
- 3. Write a C program to calculate the factorial of agivennumber.

Exercise 4:

- 1. Write a program in C to display the n terms of even natural number and theirsum.
- 2. Write a program in C to display the n terms of harmonic series and their sum. $1 + 1/2 + 1/3 + 1/4 + 1/5 \dots 1/n$ terms.

3. Write a C program to check whether a given number is an Armstrong numberornot. *Exercise 5:*

- 1. Write a program in C to print all unique elements inanarray.
- 2. Write a program in C to separate odd and even integers inseparatearrays.
- 3. Write a program in C to sort elements of array inascendingorder.

Exercise 6:

- 1. Write a program in C for multiplication of two squareMatrices.
- 2. Write a program in C to find transpose of agivenmatrix.

Exercise 7:

- 1. Write a program in C to search an element in a row wise and column wise sorted matrix.
- 2. Write a program in C to print individual characters of string inreverseorder.

Exercise 8:

- 1. Write a program in C to compare two strings without using string libraryfunctions.
- 2. Write a program in C to copy one string to another string.

Exercise 9:

- 1. Write a C Program to Store Information Using Structures with
 - Dynamically Memory Allocation
- 2. Write a program in C to demonstrate how to handle the pointers intheprogram.

Exercise 10:

- 1. Write a program in C to demonstrate the use of & (address of) and *(value at address)operator.
- 2. rite a program in C to add two numbersusingpointers.

Exercise 11:

- 1. Write a program in C to add numbers using callbyreference.
- 2. Write a program in C to find the largest element using DynamicMemoryAllocation.

Exercise 12:

- 1. Write a program in C to swap elements using callbyreference.
- 2. Write a program in C to count the number of vowels and consonants in a string using apointer.

Exercise 13:

- 1. Write a program in C to show how a function returning pointer.
- 2. Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using malloc()function.

Exercise 14:

- 1. Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using calloc() function. Understand the difference between the abovetwoprograms
- 2. Write a program in C to convert decimal number to binary number using the function.

Exercise 15:

- 1. Write a program in C to check whether a number is a prime number or not using the function.
- 2. Write a program in C to get the largest element of an array using the function. *Exercise 16:*
 - 1. Write a program in C to append multiple lines at the end of atextfile.
 - 2. Write a program in C to copy a file inanothername.
 - 3. Write a program in C to remove a file fromthedisk.

Course Outcomes:

By the end of the Lab, the student

- 1) Gains Knowledge on various concepts of aClanguage.
- 2) Able to draw flowcharts and write algorithms.
- 3) Able design and development of C problemsolvingskills.
- 4) Able to design and develop modularprogrammingskills.
- 5) Able to trace and debugaprogram

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE STRUCTURE AND SYLLABUS

For UG – R20

B. TECH - ELECTRONICS AND COMMUNICATION ENGINEERING

(Applicable for batches admitted from 2020-2021)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA - 533 003, ANDHRA PRADESH, INDIA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE STRUCTURE

I Year –I SEMESTER

S. No.	Category	Subjects	L	Т	Р	Credits
1	HS	Communicative English	3	0	0	3
2	BS	Mathematics –I(Calculus)	3	0	0	3
3	BS	Applied Chemistry	3	0	0	3
4	ES	Programming for Problem Solving Using C	3	0	0	3
5	BS	Engineering Drawing	2	0	2	3
6	LC	English Communication Skills Laboratory	0	0	3	1.5
7	LC	Applied Chemistry Lab	0	0	3	1.5
8	LC	Programming for Problem Solving Using C Lab	0	0	3	1.5
	Total Credits					

I Year – II SEMESTER

S. No	Category	Subjects	L	Т	Р	Credits
1	BS	Mathematics –II (Linear Algebra and Numerical Methods)	3	0	0	3
2	BS	Applied Physics	3	0	0	3
3	ES	Object Oriented Programming through Java	2	0	2	3
4	ES	Network Analysis	3	0	0	3
5	ES	Basic Electrical Engineering	3	0	0	3
6	LC	Electronic workshop Lab	0	0	3	1.5
7	LC	Basic Electrical Engineering Lab	0	0	3	1.5
8	LC	Applied Physics Lab	0	0	3	1.5
9	МС	Environmental Science	3	0	0	0.0
Total Credits						19.5

II Year –I Semester

S. No	Category	Name of the Subject	L	Т	Р	Credits
1	PC	Electronic Devices and Circuits	3	1	0	3
2	PC	Switching Theory and Logic Design	3	1	0	3
3	PC	Signals and Systems	3	1	0	3
4	BS	Mathematics-III (Transforms and Vector Calculus)	3	1	0	3
5	BS	Random Variables and Stochastic Processes	3	1	0	3
6	LC	OOPS through Java Lab	0	0	2	1.5
7	LC	Electronic Devices and Circuits -Lab	0	0	2	1.5
8	LC	Switching Theory and Logic Design–Lab	0	0	2	1.5
9	SC	Python Programming	0	0	4	2
Total Credits						21.5

II Year – II Semester

S. No	Category	Name of the subject	L	Т	Р	Credits
1	PC	Electronic Circuit Analysis	3	1	0	3
2	PC	Digital IC Design	3	1	0	3
3	PC	Analog Communications	3	0	0	3
4	ES	Linear control Systems	3	1	0	3
5	HS	Management and Organizational Behavior	3	0	0	3
6	LC	Electronic Circuit Analysis Lab	0	0	3	1.5
7	LC	Analog Communications Lab	0	0	3	1.5
8	LC	Digital IC Design Lab	0	0	3	1.5
9	SC	Soft Skills	0	0	4	2
10	MC	Constitution of India	3	0	0	0
Total Credits						21.5
Honors/Minor courses (The hours distribution can be 3-0-2 or 3-1-0 also)						4

III Year - I Semester							
S. No	Category	Name of the subject	L	Т	Р	Credits	
1	PC	Analog ICs and Applications	3	0	0	3	
2	PC	Electromagnetic Waves and Transmission Lines	3	0	0	3	
3	PC	Digital Communications	3	0	0	3	
4	OE1	Open Elective Course/Job oriented elective-1	2	0	2	3	
5	PE1	Professional Elective courses -1	3	0	0	3	
6	LC	Analog ICs and Applications LAB	0	0	3	1.5	
7	LC	Digital Communications Lab	0	0	3	1.5	
8	SC	Data Structures using Java Lab	0	0	4	2	
9	MC	Indian Traditional Knowledge	2	0	0	0	
	Summer	Internship 2 Months (Mandatory) after second year (to be evaluated during V semester	0	0	0	1.5	
Total credits						21.5	
Honors/Minor courses (The hours distribution can be 3-0-2 or 3-1-0 also)						4	

<u>PE1:</u>	<u>OE1:</u>
 Antenna and Wave Propagation Electronic Measurements and Instrumentation Computer Architecture & Organization 	Candidate should select the subject from list of subjects offered by other departments

S. No	Category	Name of the subject	L	Т	Р	Credits
1	PC	Microprocessor and Microcontrollers	3	1	0	3
2	PC	VLSI Design	3	0	0	3
3	PC	Digital Signal Processing	3	0	0	3
4	PE2	Professional Elective courses - 2	3	0	0	3
5	OE 2	Open Elective Course/Job oriented elective -2	2	0	2	3
6	LC	Microprocessor and Microcontrollers - Lab	0	0	3	1.5
7	LC	VLSI Design Lab	0	0	3	1.5
8	LC	Digital Signal Processing Lab	0	0	3	1.5
9	SC	ARM based/ Aurdino based Programming	1	0	2	2
10	MC	Research Methodology	2	0	0	0
Total credits						21.5
Honors/Minor courses (The hours distribution can be 3-0-2 or 3-1-0 also)						4

III Year –II Semester

Industrial/Research Internship (Mandatory) 2 Months during summer vacation

	PE2:	
--	-------------	--

OE2:

 Microwave Engineering Mobile & Cellular Communication Embedded Systems CMOS Analog IC Design 	Candidate should select the subject from list of subjects offered by other departments
---	--

S. No	Category	Name of the subject	L	Т	Р	Credits
1	PE	Professional Elective courses -3	3	0	0	3
2	PE	Professional Elective courses -4	3	0	0	3
3	PE	Professional Elective courses -5	3	0	0	3
4	OE	Open Elective Courses/ Job oriented elective -3	2	0	2	3
5	OE	Open Elective Courses/ Job oriented elective -4	2	0	2	3
6	HS	*Humanities and Social Science Elective	3	0	0	3
7	SC	Designer tools (HFSS, Microwave Studio CST. Cadence Virtuoso. Synopsys, Mentor Graphics, Xilinx.)	1	0	2	2
Indus		arch Internship 2 Months (Mandatory) afterthird r (to be evaluated during VII semester	0	0	0	3
Total credits						23
Honors/Minor courses (The hours distribution can be 3-0-2 or 3-1-0 also)						4

<u>PE 3:</u>	<u>PE5:</u>
1. Optical Communication 2. Digital Image Processing 3. Low Power VLSI Design	1. Radar engineering 2.Pattern recognition & Machine Learning 3.Internet of Things
<u>PE4:</u> 1.Satellite Communications 2.Soft Computing Techniques 3.Digital IC Design using CMOS	

IV Year – II Semester

S. No.	Category	Code	Course Title	Hou	rs per v	veek	Credits
1	Major Project	PROJ	Project work, seminar and internship inindustry	-	-	-	12
	INTERNSHIP (6 MONTHS)						
					Total c	credits	12

SUBJECTS FOR HONORS

POOL-1

Instrumentation and Control Systems: (any four of the following subjects which are not chosen as professional electives are to be considered for Honors Degree)

S. No.	Subject	L-T-P	Credits			
1	Data Acquisition systems	3-1-0	4			
2	Adaptive Control Systems	3-1-0	4			
3	Bio-Medical Instrumentation	3-1-0	4			
4	Digital Control Systems	3-1-0	4			
5	Process Control Instrumentation	3-1-0	4			
6	Transducers & sensors	3-1-0	4			
7	MEMS	3-1-0	4			
8	Intelligent & Smart Instrumentation	3-1-0	4			
In addition to any of the four subjects, MOOC/NPTEL Courses for 04 credits (02						
courses@ 2 credits each) are compulsory in the domain of Electronics and						
Commu	nication Engineering					

POOL-2

Integrated circuits and Systems: (any four of the following subjects which are not chosen asprofessional electives are to be considered for Honors Degree)

S. No	Subject	L-T-P	Credits		
1	VLSI Technology and Design	3-1-0	4		
2	CMOS Analog IC Design	3-1-0	4		
3	CMOS Digital IC design	3-1-0	4		
4	Design for Testability	3-1-0	4		
5	System on Chip	3-1-0	4		
6	Programmable Logic Devices and ASIC	3-1-0	4		
7	Scripting Language	3-1-0	4		
8	Low Power VLSI Design	3-1-0	4		
In addition to any of the four subjects, MOOC/NPTEL Courses for 04 credits (02					
courses@ 2 credits each) are compulsory in the domain of Electronics and					
Commu	nication Engineering				

POOL-3

Communication Engineering: (any four of the following subjects which are not chosen as a professional electives are to be considered for Honors Degree)

S. No	Subject	L-T-P	Credits		
1	Wireless Sensor Networks	3-1-0	4		
2	Software defined radio	3-1-0	4		
3	Data Communications & Computer Networks	3-1-0	4		
4	Cognitive radio	3-1-0	4		
5	5G Communications	3-1-0	4		
6	Satellite communication	3-1-0	4		
7	Optical Communication	3-1-0	4		
8	Global navigational satellite systems	3-1-0	4		
In addition to any of the four subjects, MOOC/NPTEL Courses for 04 credits (02					
courses@ 2 credits each) are compulsory in the domain of Electronics and					
Commu	nication Engineering				

POOL-4

Digital Signal processing (any four of the following subjects which are not chosen as professional electives are to be considered for Honors Degree)

S. No	Subject	L-T-P	Credits			
1	Speech Signal Processing	3-1-0	4			
2	Video Signal Processing	3-1-0	4			
3	Adaptive Signal Processing	3-1-0	4			
4	Bio- Medical Signal Processing	3-1-0	4			
5	DSP Processors and Architectures	3-1-0	4			
6	Wavelet Theory	3-1-0	4			
7	Multirate Systems And Filter Banks	3-1-0	4			
8	Mathematical methods for signal processing	3-1-0	4			
In addit	In addition to any of the four subjects Compulsory MOOC/NPTEL Courses for 04 credits (02 courses@ 2 credits each)					

GENERAL MINOR TRACKS

S. No.	Subject	L-T-P	Credits				
1	Electronics Devices and Basic Circuits	3-1-0	4				
2	Digital Electronics	3-1-0	4				
3	Principles of Communication	3-1-0	4				
4	Signal Analysis	3-1-0	4				
In addition to any of the four subjects, MOOC/NPTEL Courses for 04 credits (02 courses@ 2 credits each) are compulsory in the domain of Electronics and Communication Engineering							

List of the **OPEN ELECTIVES** offered by **ECE** Department to **other Branches**:

- 1. Basics of Signals and Systems
- 2. Electronic Measurements and Instrumentation
- 3. Principles of Signal Processing
- 4. Industrial Electronics
- 5. Consumer Electronics
- 6. Fundamentals of Microprocessors and Microcontrollers
- 7. Transducers and Sensors
- 8. IOT and Applications
- 9. Soft Computing Techniques
- 10. IC Applications
- 11. Principles of Communications
- 12. Basic Electronics
- 13. Data Communications
- 14. Digital Logic design
- 15. Remote Sensing and GIS
- 16. Bio Medical Instrumentation

I Year - II Semester	L	Т	P	С			
1 Tear - 11 Semester		3	0	0	3		
MATHEMATICS-II							

Course Objectives:

- To instruct the concept of Matrices in solving linear algebraic equations
- To elucidate the different numerical methods to solve nonlinear algebraic equations
- To disseminate the use of different numerical techniques for carrying out numerical integration.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

Course Outcomes: At the end of the course, the student will be able to

- develop the use of matrix algebra techniques that is needed by engineers for practical applications (L6)
- solve system of linear algebraic equations using Gauss elimination, Gauss Jordan, Gauss Seidel (L3)
- evaluate the approximate roots of polynomial and transcendental equations by different algorithms (L5)
- apply Newton's forward & backward interpolation and Lagrange's formulae for equal and unequal intervals (L3)
- apply numerical integral techniques to different Engineering problems (L3)
- apply different algorithms for approximating the solutions of ordinary differential equations with initial conditions to its analytical computations (L3)

UNIT - I: Solving systems of linear equations, Eigen values and Eigen vectors: (10hrs)

Rank of a matrix by echelon form and normal form – Solving system of homogeneous and non-homogeneous linear equations – Gauss Eliminationmethod – Eigen values and Eigen vectors and properties (article-2.14 in text book-1).

Unit – II: Cayley–Hamilton theorem and Quadratic forms:

Cayley-Hamilton theorem (without proof) – Applications – Finding the inverse and power of a matrix by Cayley-Hamilton theorem – Reduction to Diagonal form – Quadratic forms and nature of the quadratic forms – Reduction of quadratic form to canonical forms by orthogonal transformation. Singular values of a matrix, singular value decomposition (text book-3).

UNIT – III: Iterative methods:

Introduction– Bisection method–Secant method – Method of false position– Iteration method – Newton-Raphson method (One variable and simultaneous Equations) – Jacobi and Gauss-Seidel methods for solving system of equations numerically.

UNIT – IV: Interpolation:

Introduction– Errors in polynomial interpolation – Finite differences– Forward differences– Backward differences – Central differences – Relations between operators – Newton's forward and backward formulae for interpolation – Interpolation with unequal intervals – Lagrange's interpolation formula– Newton's divide difference formula.

(8 hrs)

(**10hrs**)

(**10 hrs**)

UNIT – V: Numerical differentiation and integration, Solution of ordinary differential equations with initial conditions: (10 hrs)

Numerical differentiation using interpolating polynomial – Trapezoidal rule– Simpson's 1/3rd and 3/8th rule– Solution of initial value problems by Taylor's series– Picard's method of successive approximations– Euler's method – Runge-Kutta method (second and fourth order).

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- **2. B. V. Ramana**, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.
- 3. David Poole, Linear Algebra- A modern introduction, 4th Edition, Cengage.

Reference Books:

- **1. Steven C. Chapra,** Applied Numerical Methods with MATLAB for Engineering and Science, Tata Mc. Graw Hill Education.
- 2. M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications.
- 3. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press.

I Veen II Semester	L	Т	Р	С	
I Year - II Semester		3	0	0	3
APPLIED PHYSICS					

Unit-I: Wave Optics

12hrs

Interference: Principle of superposition –Interference of light - Interference in thin films (Reflection Geometry) & applications - Colors in thin films- Newton's Rings-Determination of wavelength and refractive index.

Diffraction: Introduction - Fresnel and Fraunhofer diffraction - Fraunhofer diffraction due to single slit, double slit - N-slits (Qualitative) – Diffraction Grating - Dispersive power and resolving power of Grating(Qualitative).

Polarization: Introduction-Types of polarization - Polarization by reflection, refraction and Double refraction - Nicol's Prism -Half wave and Quarter wave plates.

Unit Outcomes:

The students will be able to

- **Explain** the need of coherent sources and the conditions for sustained interference(L2)
- Identify engineering applications of interference(L3)
- > Analyze the differences between interference and diffraction with applications(L4)
- > Illustrate the concept of polarization of light and its applications(L2)
- > Classify ordinary polarized light and extraordinary polarized light(L2)

Unit-II: Lasers and Fiberoptics

Lasers: Introduction – Characteristics of laser – Spontaneous and Stimulated emissions of radiation – Einstein's coefficients – Population inversion – Lasing action - Pumping mechanisms – Ruby laser – He-Ne laser - Applications of lasers.

Fiber optics: Introduction –Principle of optical fiber- Acceptance Angle - Numerical Aperture - Classification of optical fibers based on refractive index profile and modes – Propagation of electromagnetic wave through optical fibers - Applications.

Unit Outcomes:

The students will be able to

- Understand the basic concepts of LASER light Sources(L2)
- > **Apply** the concepts to learn the types of lasers(L3)
- Identifies the Engineering applications of lasers(L2)
- **Explain** the working principle of optical fibers(L2)
- Classify optical fibers based on refractive index profile and mode of propagation(L2)
- > **Identify** the applications of optical fibers in various fields(L2)

8hrs

Unit III: Quantum Mechanics, Free Electron Theory andBand theory 10hrs **Quantum Mechanics:** Dual nature of matter – Heisenberg's Uncertainty Principle – Significance and properties of wave function – Schrodinger's time independent and dependent wave equations– Particle in a one-dimensional infinite potential well.

Free Electron Theory: Classical free electron theory (Qualitative with discussion of merits and demerits) – Quantum free electron theory– Equation for electrical conductivity based on quantum free electron theory- Fermi-Dirac distribution- Density of states (3D) - Fermi energy.

Band theory of Solids: Bloch's Theorem (Qualitative) - Kronig - Penney model (Qualitative)- E vs K diagram - v vs K diagram - effective mass of electron – Classification of crystalline solids–concept of hole.

Unit Outcomes:

The students will be able to

- **Explain** the concept of dual nature of matter(L2)
- > **Understand** the significance of wave function(L2)
- > **Interpret** the concepts of classical and quantum free electron theories(L2)
- **Explain** the importance of K-Pmodel
- Classify the materials based on band theory(L2)
- > **Apply** the concept of effective mass of electron(L3)

Unit-IV: Dielectric and Magnetic Materials

DielectricMaterials: Introduction - Dielectric polarization - Dielectric polarizability, Susceptibility and Dielectric constant - Types of polarizations- Electronic (Quantitative), Ionic (Quantitative) and Orientation polarizations (Qualitative) - Lorentz internal field-Clausius- Mossotti equation-Piezoelectricity.

Magnetic Materials: Introduction - Magnetic dipole moment - Magnetization-

Magnetic susceptibility and permeability - Origin of permanent magnetic moment - Classificationof

magnetic materials: Dia, para, Ferro, antiferro & Ferri magnetic materials - Domain concept for Ferromagnetism & Domain walls (Qualitative) - Hysteresis - soft and hard magnetic materials- Eddy currents- Engineering applications.

Unit Outcomes:

The students will be able to

- **Explain** the concept of dielectric constant and polarization in dielectric materials(L2)
- Summarize various types of polarization of dielectrics(L2)
- Interpret Lorentz field and Claussius- Mosotti relation indielectrics(L2)
- Classify the magnetic materials based on susceptibility and their temperature dependence (L2)
- **Explain** the applications of dielectric and magnetic materials(L2)
- > Apply the concept of magnetism to magnetic data storage devices(L3)

8hrs

10hrs

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Unit – V: SemiconductorsandSuperconductors

Semiconductors: Introduction- Intrinsic semiconductors – Density of charge carriers – Electrical conductivity – Fermi level – extrinsic semiconductors – density of charge carriers – dependence of Fermi energy on carrier concentration and temperature - Drift and diffusion currents – Einstein's equation- Hall effect – Hall coefficient –Applications of Hall effect.

Superconductors: Introduction – Properties of superconductors – Meissner effect – Type I and Type II superconductors – BCS theory (Qualitative) – Josephson effects (AC and DC) – SQUIDs – High T_c superconductors – Applications of superconductors.

Unit Outcomes:

The students will be able to

- Classify the energy bands of semiconductors(L2)
- Interpret the direct and indirect band gap semiconductors(L2)
- > **Identify** the type of semiconductor using Hall effect(L2)
- Identify applications of semiconductors in electronic devices(L2)
- Classify superconductors based on Meissner's effect(L2)
- **Explain** Meissner's effect, BCS theory & Josephson effect in superconductors(L2)

Text books:

- 1. M. N. Avadhanulu, P.G.Kshirsagar & TVS Arun Murthy" A Text book of Engineering Physics"-S.Chand Publications, 11th Edition2019.
- 2. Engineering Physics" by D.K.Bhattacharya and Poonam Tandon, Oxford press(2015).
- 3. Applied Physics by P.K.Palanisamy SciTechpublications.

Reference Books:

- 1. Fundamentals of Physics Halliday, Resnick and Walker, John Wiley&Sons
- 2. Engineering Physics by M.R.Srinivasan, New Age international publishers(2009).
- 3. Shatendra Sharma, Jyotsna Sharma, "Engineering Physics", Pearson Education, 2018
- 4. Engineering Physics Sanjay D. Jain, D. Sahasrabudhe and Girish, UniversityPress
- 5. Semiconductor physics and devices- Basic principle Donald A, Neamen, Mc GrawHill
- 6. B.K. Pandey and S. Chaturvedi, Engineering Physics, CengageLearning

I Voon II Someston		L	Т	Р	С
I Year - II Semester		2	0	2	3
OBJECT ORIENTED PROGRAMMING THROUGH JAVA					

Course Objectives:

This subject will help to improve

- the analytical skills of object orientedprogramming
- Overall development of problem solving and criticalanalysis.
- Formal introduction to Java programminglanguage

Course Outcomes:

On successful completion of this course, the student should be able to:

- Show competence in the use of the Java programming language in the development of small to medium- sized application programs that demonstrate professionally acceptable coding and performancestandard
- Illustrate the basic principles of the object-orientedprogramming
- Demonstrate an introductory understanding of graphical user interfaces, multithreaded programming, and event-drivenprogramming.

<u>Unit I</u>

Introduction to Java : Basics of Java programming, Data types, Variables, Operators, Control structures including selection, Looping, Java methods, Overloading, Math class, Arrays in java.

Objects and Classes : Basics of objects and classes in java, Constructors, Finalizer, Visibility modifiers, Methods and objects, Inbuilt classes like String, Character, StringBuffer, File, this reference.

<u>Unit II</u>

Inheritance and Polymorphism : Inheritance in java, Super and sub class, Overriding, Object class, Polymorphism, Dynamic binding, Generic programming, Casting objects, Instance of operator, Abstract class, Interface in java, Package in java, UTILpackage.

Unit III

Event and GUI programming : Event handling in java, Event types, Mouse and key events, GUI Basics, Panels, Frames, Layout Managers: Flow Layout, Border Layout, Grid Layout, GUI components like Buttons, Check Boxes, Radio Buttons, Labels, Text Fields, Text Areas, Combo Boxes, Lists, Scroll Bars, Sliders, Windows, Menus, Dialog Box, Applet and its life cycle, Introduction to swing, Creating a swing applet, swing controls and components.

<u>Unit IV</u>

I/O programming: Text and Binary I/O, Binary I/O classes, Object I/O, Random Access Files. Event driven model, handling events

<u>Unit V</u>

Multithreading in java: Thread life cycle and methods, Runnable interface, Thread synchronization, Exception handling with try-catch-finally, Collections in java, Introduction to JavaBeans and Network Programming.

Text Books:

- 1) Introduction to Java Programming (Comprehensive Version), Daniel Liang, Seventh Edition, Pearson.
- 2) Programming in Java, SachinMalhotra&SaurabhChaudhary, Oxford University Press.

Reference Books:

- 1) Murach's Beginning Java 2, Doug Lowe, Joel Murach and Andrea Steelman, SPD.
- 2) Core Java Volume-I Fundamentals, Eight Edition, Horstmann& Cornell, Pearson Education.
- 3) The Complete Reference, Java 2 (Fourth Edition), Herbert Schild, TMH. Java Programming, D. S. Malik, CengageLearning.

ATAKINADA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

I Year - II Semester	L	Т	Р	С	
	3	0	0	3	
	NETWORK ANALYSIS				

UNIT – I

Introduction to Electrical Circuits : Network elements classification, Electric charge and current, Electric energy and potential, Resistance parameter – series and parallel combination, Inductance parameter – series and parallel combination, Capacitance parameter – series and parallel combination. Energy sources: Ideal, Non-ideal, Independent and dependent sources, Source transformation, Kirchoff's laws, Mesh analysis and Nodal analysis problem solving with resistances only including dependent sources also. (Text Books: 1,2,3, Reference Books: 3)

Fundamentals and Network Topology: Definitions of terms associated with periodic functions: Time period, Angular velocity and frequency, RMS value, Average value, Form factor and peak factor- problem solving, Phase angle, Phasor representation, Addition and subtraction of phasors, mathematical representation of sinusoidal quantities, explanation with relevant theory, problem solving. Principal of Duality withexamples.

Network Topology: Definitions of branch, node, tree, planar, non-planar graph, incidence matrix, basic tie set schedule, basic cut set schedule. (Text Books: 2,3, Reference Books: 3)

UNIT – II

Transients: First order differential equations, Definition of time constants, R-L circuit, R-C circuit with DC excitation, Evaluating initial conditions procedure, second order differential equations, homogeneous, non-homogenous, problem solving using R-L-C elements with DC excitation and AC excitation, Response as related to s-plane rotation of roots. Solutions using Laplace transform method. (Text Books: 1,2,3, Reference Books: 1,3)

UNIT – III

Steady State Analysis of A.C Circuits: Impedance concept, phase angle, series R-L, R-C, R-L-C circuits problem solving. Complex impedance and phasor notation for R-L, R-C, R-L-C problem solving using mesh and nodal analysis, Star-Delta conversion, problem solving. (Text Books: 1,2, Reference Books: 3)

Coupled Circuits :Coupled Circuits: Self inductance, Mutual inductance, Coefficient of coupling, analysis of coupled circuits, Natural current, Dot rule of coupled circuits, Conductively coupled equivalent circuits- problem solving.

UNIT - IV

Resonance: Introduction, Definition of Q, Series resonance, Bandwidth of series resonance, Parallel resonance, Condition for maximum impedance, current in anti resonance, Bandwidth ofparallel resonance, general case-resistance present in both branches, anti resonance at all frequencies. (Text Books:2,3, Reference Books: 3)

Network Theorems: Thevinin's, Norton's, Milliman's, Reciprocity, Compensation, Substitution, Superposition, Max Power Transfer, Tellegens- problem solving using dependent sources also. (Text Books: 1,2,3, ReferenceBooks:2)

UNIT – V

Two-port Networks: Relationship of two port networks, Z-parameters, Y-parameters, Transmission line parameters, h-parameters, Inverse h-parameters, Inverse Transmission line parameters, Relationship between parameter sets, Parallel connection of two port networks, Cascading of two port networks, series connection of two port networks, problem solving including dependent sources also. (Text Books: 1,2, Reference Books: 1,3)

TEXT BOOKS:

- 1. Network Analysis ME Van Valkenburg, Prentice Hall of India, 3rdEdition,2000.
- 2. Network Analysis by K.Satya Prasad and S Sivanagaraju, CengageLearning
- 3. Electric Circuit Analysis by Hayt and Kimmarle, TMH

REFERENCES:

- 1. Network lines and Fields by John. D. Ryder 2ndedition, Asiapublishinghouse.
- 2. Basic Circuit Analysis by DR Cunninghan, Jaico Publishers.
- 3. Network Analysis and Filter Design by Chadha, UmeshPublications.

COURSE OBJECTIVES:

- To understand the basic concepts on RLC circuits.
- To know the behavior of the steady states and transients states inRLCcircuits.
- To know the basic Laplace transforms techniques inperiods' waveforms.
- To understand the two portnetworkparameters.
- To understand the properties of LC networksandfilters.

COURSE OUTCOME:

- gain the knowledge on basic networkelements.
- will analyze the RLC circuits behaviorindetailed.
- analyze the performance of periodicwaveforms.
- gain the knowledge in characteristics of two port network parameters (Z,Y,ABCD,h&g).
- analyze the filter design concepts in realworldapplications.

I Year - II Semester		L	Т	Р	С	
1 Tear - 11 Semester		3	0	0	3	
BASIC FLECTRICAL ENGINEERING						

Preamble:

This course covers various topics related to principle of operation and performance of various electrical machines.

Course Educational Objectives:

- To understand the principle of operation, constructional details and operational characteristics of DC generators.
- To understand the principle of operation, characteristics of DC motor. Methodsof starting and speed control methods ofDCmotors.
- To learn the constructional details, principle of operation and performance of transformers.
- To study the principle of operation, construction and details of synchronous machines.
- To learn the principle of operation, constructional details, performance, torque slip characteristics and starting methods of 3-phaseinductionmotors.

Unit I

DC Machines

Principle of operation of DC generator – emf equation – types of DC machines – torque equation of DC motor – applications – three point starter - losses and efficiency - swinburne's test - speed control methods – OCC of DC generator- Brake test on DC Shunt motor-numerical problems

Unit II

Transformers

Principle of operation of single phase transformer constructional features – EMF equation – Losses and efficiency of transformer- regulation of transformer – OC & SC tests predetermination of efficiency and regulations – Sumpner's test-NumericalProblems.

Unit III

Synchronous Generators

Principle of operation and construction of alternators – types of alternators Regulation of alternator by synchronous impedance method-EMF equation of three phase alternator

Synchronous Motors

Construction of three phase synchronous motor - operating principle –equivalent circuit of synchronous motor.

Unit IV

Induction Machine: Principle of operation and construction of three-phase induction motors – slip ring and squirrel cage motors – slip-torque characteristics – efficiency calculation – starting methods-Brake test on 3-Phase Induction Motor.

Unit V

Special Machines: Principle of operation and construction - single phase induction motor - shaded pole motors – capacitor motors and AC servomotor.

Course Outcomes:

- Able to explain the operation of DC generator and analyze the characteristics of DC generator.
- Able to explain the principle of operation of DC motor and analyze their characteristics. Acquire the skills to analyze the starting and speed control methods of DC motors.
- Ability to analyze the performance and speed torque characteristics of a3phase induction motor and understand starting methods of 3phaseinductionmotor.
- Able to explain the operation of Synchronous Machines
- Capability to understand the operation of variousspecialmachines.

TEXT BOOKS:

- 1. Principles of Electrical Machines by V.K. Mehta & Rohit Mehta, S.Chandpublications
- 2. Theory & performance of Electrical Machines by J.B.Guptha, S.K.Kataria&Sons

REFERENCE BOOKS:

1.Basic Electrical Engineering by M.S.Naidu and S.Kamakshiah, TMH Publications

2. Fundamentals of Electrical Engineering by Rajendra Prasad, PHI Publications, 2nd edition

3. Basic Electrical Engineering by Nagsarkar, Sukhija, Oxford Publications, 2ndedition

I Year - II Semester	L	Т	Р	С
1 Tear - 11 Semester	0	0	3	1.5
ELECTRONIC WORKSHOP LAB				

- I. Identificationofcomponents
- II. Laboratoryequipment
- III. Solderingpractice
- IV. PCBLayout
- V. TestingofComponents
- VI. CRO

I. Identificationofcomponents:

- Resistors:- Types of Resistors, Value of Resistance using colorcode, DRBS.
- Capacitors:- Types of capacitors, value of capacitance using colorcode, DCBS.
- Inductors:- Types ofInductors,DLB
- Rheostats:- Types of Rheostats, Types of potentiometers, Relays.
- Switches:- TypesofSwitches.
- Cables: TypesofCables.
- Types ofInstrumentsused.

Identification of active elements.

(Two Terminal, Three Terminal Devices)

- (SC diode, Zenerdiode, D.AC)
- Three Terminal Devices: BJT, UJT, SCR, FET, MOSFET, TRIAC.
- Digital and Analog ICs. (TO and Flat packages) ICregulatorstypes.
- Testing of above components usingMultimeter.

II. LaboratoryEquipment:

A) Meters:-

- Types of Voltmeters, Types of Ammeters both AnalogandDigital.
- Types of Multi meters (Analog&Digital)
- AVO Meters.
- FETinputVoltmeter.
 - B) Laboratory Function Generators and AudioOscillators.
 - C) PowerSupplies.
 - D) RFgenerators.
 - E) Different TypesofTransformers. (Power, AF, RF, etc.)

III. Solderingpractice

Tools kit including soldering iron Tools Kit:

- Insulatednoseplayer
- Insulatedcuttingplayer
- Screw driverkit
- Electricaltester
- Soldering iron,Lead,Flex

IV. PCB layoutandDesign. Materials required, centimeter graph sheets, marker.

V. Testing of Components. Active and Passive Components

VI. CRO

Acquaintance with CRO Measurements on CRO

I Year - II Semester		L	Т	Р	С	
		0	0	3	1.5	
BASIC ELECTRICAL ENGINEERING LAB						

Learning Objectives:

- To plot the magnetizing characteristics of DC shunt generator and understand the mechanism of self-excitation.
- To control the speed of DC motors.
- To determine and predetermine the performance of DC machines.
- To predetermine the efficiency and regulation of transformers and assess their performance.
- To analyse performance of three phase induction motor.
- To understand the significance of regulation of an alternators using synchronousimpedance method.

Any ten of the following experiments are to be conducted

- 1. Magnetization characteristics of D.C. Shunt generator.
- 2. Speed control of D.C.shuntmotor.
- 3. Brake test on DCshuntmotor.
- 4. Swinburne's test onDCmachine
- 5. Load test on DCshuntgenerator
- 6. Load test on DCseriesgenerator.
- 7. Separation of losses iun DCShuntmotor
- 8. OC & SC tests onsingle-phasetransformer
- 9. Sumpner's test on singlephasetransformer
- 10. Brake test on 3-phase Inductionmotor.
- 11. Regulation of alternator by synchronousimpedancemethod.

Learning Outcomes:

The student should be able to:

- Determine and predetermine the performance of DC machinesandtransformers.
- Control the DC shunt machines.
- Compute the performance of 1-phase transformer.
- Perform tests on 3-phase induction motor and alternator to determine their performance characteristics.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

(Any 10 of the following listed experiments)

I Year - II Semester		L	Т	Р	С
		0	0	3	1.5
	APPLIED PHYSICS LABORATORY				

List of Applied Physics Experiments

- 1. Determination of thickness of thin object by wedgemethod.
- 2. Determination of radius of curvature of a given plano convex lens by Newton'srings.
- 3. Determination of wavelengths of different spectral lines in mercury spectrum using diffraction grating in normal incidence configuration.
- 4. Determination of dispersive power of theprism.
- 5. Determination of dielectric constant using charging and dischargingmethod.
- 6. Study the variation of B versus H by magnetizing the magnetic material (B-Hcurve).
- 7. Determination of numerical aperture and acceptance angle of an optical fiber.
- 8. Determination of wavelength of Laser light using diffractiongrating.
- 9. Estimation of Planck's constant using photoelectriceffect.
- 10. Determination of the resistivity of semiconductor by four probemethod.
- 11. To determine the energy gap of a semiconductor using p-n junctiondiode.
- 12. Magnetic field along the axis of a current carrying circular coil by Stewart & Gee's Method
- 13. Determination of Hall voltage and Hall coefficient of a given semiconductor usingHall Effect.
- 14. Measurement of resistance of a semiconductor with varyingtemperature.
- 15. Resistivity of a Superconductor using four probe method & Meissnereffect.

References:

S. Balasubramanian, M.N. Srinivasan "A Text Book of Practical Physics"- S Chand Publishers, 2017.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

I Year - II Semester		L	Т	Р	С
1 Tear - 11 Semester		3	0	0	0
	ENVIRONMENTAL SCIENCE				

Course Objective:

Engineering drawing being the principal method of communication for engineers, the objective is to introduce the students, the techniques of constructing the various types of polygons, curves and scales. The objective is also to visualize and represent the 3D objects in 2D planes with proper dimensioning, scaling etc.

Unit I

Objective: To introduce the students to use drawing instruments and to draw polygons, Engg. Curves. **Polygons:** Constructing regular polygons by general methods, inscribing and describing polygons on circles. **Curves:** Parabola, Ellipse and Hyperbola by general and special methods, cycloids, involutes, tangents &normals for the curves.

Scales: Plain scales, diagonal scales and vernier scales

Unit II

Objective: To introduce the students to use orthographic projections, projections of points & simple lines. To make the students draw the projections of the lines inclined to both the planes.

Orthographic Projections: Reference plane, importance of reference lines, projections of points in various quadrants, projections of lines, line parallel to both the planes, line parallel to one plane and inclined to other plane.

Projections of straight lines inclined to both the planes, determination of true lengths, angle of inclination and traces.

Unit III

Objective: The objective is to make the students draw the projections of the plane inclined toboth the planes. Projections of planes: regular planes perpendicular/parallel to one reference plane and inclined to the other reference plane; inclined to both the reference planes.

Unit IV

Objective: The objective is to make the students draw the projections of the various types of solids in different positions inclined to one of the planes.

Projections of Solids – Prisms, Pyramids, Cones and Cylinders with the axis inclined to both the planes.

Unit V

Objective: The objective is to represent the object in 3D view through isometric views. The student will be able to represent and convert the isometric view to orthographic view and vice versa.

Conversion of isometric views to orthographic views; Conversion of orthographic views to isometric views. Computer Aided Design, Drawing practice using Auto CAD, Creating 2D&3D drawings of objects using Auto CAD

Note: In the End Examination there will be no question from CAD.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

TEXT BOOKS:

- 1. Engineering Drawing by N.D. Butt, Chariot Publications
- 2. Engineering Drawing by Agarwal & Agarwal, Tata McGraw Hill Publishers

REFERENCE BOOKS:

- 1. Engineering Drawing by K.L.Narayana& P. Kannaiah, Scitech Publishers
- 2. Engineering Graphics for Degree by K.C. John, PHI Publishers
- 3. Engineering Graphics by PI Varghese, McGrawHill Publishers
- 4. Engineering Drawing + AutoCad K Venugopal, V. Prabhu Raja, New Age

Course Outcome: The student will learn how to visualize 2D & 3D objects.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE STRUCTURE AND SYLLABUS

For UG -R20

B. TECH - COMPUTER SCIENCE & ENGINEERING

(Applicable for batches admitted from 2020-2021)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA - 533 003, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

	I Year – I SEMESTER									
S. No	Course Code	Courses	L	Т	Р	Credits				
1	HS	Communicative English	3	0	0	3				
2	BS	Mathematics - I (Calculus And Differential Equations)	3	0	0	3				
3	BS	Applied Physics	3	0	0	3				
4	ES	Programming for Problem Solving using C	3	0	0	3				
5	ES	Computer Engineering Workshop	1	0	4	3				
6	HS	English Communication Skills Laboratory	0	0	3	1.5				
7	BS	Applied Physics Lab	0	0	3	1.5				
8	ES	Programming for Problem Solving using C Lab	0	0	3	1.5				
	Total Credits					19.5				

COURSE STRUCTURE

	I Year – II SEMESTER									
S. No	Course Code	Courses	L	Т	Р	Credits				
1	BS	Mathematics – II (Linear Algebra And Numerical Methods)	3	0	0	3				
2	BS	Applied Chemistry	3	0	0	3				
3	ES	Computer Organization	3	0	0	3				
4	ES	Python Programming	3	0	0	3				
5	ES	Data Structures	3	0	0	3				
6	BS	Applied Chemistry Lab	0	0	3	1.5				
7	ES	Python Programming Lab	0	0	3	1.5				
8	ES	Data Structures Lab	0	0	3	1.5				
9	MC	Environment Science	2	0	0	0				
	Total Credits				1	19.5				

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - I Semester		L	Τ	P	С
		3	0	0	3
	COMMUNICATIVE ENGLISH				

Introduction

The course is designed to train students in receptive (listening and reading) as well as productive and interactive (speaking and writing) skills by incorporating a comprehensive, coherent and integrated approach that improves the learners' ability to effectively use English language in academic/ workplace contexts. The shift is from *learning about the language* to *using the language*. On successful completion of the compulsory English language course/s in B.Tech., learners would be confident of appearing for international language qualification/proficiency tests such as IELTS, TOEFL, or BEC, besides being able to express themselves clearly in speech and competently handle the writing tasks and verbal ability component of campus placement tests. Activity based teaching-learning methods would be adopted to ensure that learners would engage in actual use of language both in the classroom and laboratory sessions.

Course Objectives:

- ➤ Facilitate effective listening skills for better comprehension of academic lectures and English spoken by native speakers
- ➤ Focus on appropriate reading strategies for comprehension of various academic texts and authentic materials
- ➤ Help improve speaking skills through participation in activities such as role plays, discussions and structured talks/oral presentations
- Impart effective strategies for good writing and demonstrate the same in summarizing, writing well organized essays, record and report useful information
- Provide knowledge of grammatical structures and vocabulary and encourage their appropriate use in speech and writing

Course Outcomes:

At the end of the module, the learners will be able to

- understand social or transactional dialogues spoken by native speakers of English and identify the context, topic, and pieces of specific information
- > ask and answer general questions on familiar topics and introduce oneself/others
- employ suitable strategies for skimming and scanning to get the general idea of a text and locate specific information
- recognize paragraph structure and be able to match beginnings/endings/headings with paragraphs
- ➢ form sentences using proper grammatical structures and correct word forms

Unit 1:

Lesson-1: A Drawer full of happiness from "Infotech English", Maruthi Publications

Lesson-2: Deliverance by Premchand from "The Individual Society", Pearson Publications. (Non-detailed)

Listening: Listening to short audio texts and identifying the topic. Listening to prose, prose and conversation.

Speaking: Asking and answering general questions on familiar topics such as home, family, work, studies and interests. Self introductions and introducing others.

Reading: Skimming text to get the main idea. Scanning to look for specific pieces of information.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Reading for Writing: Paragraph writing (specific topics) using suitable cohesive devices; linkers, sign posts and transition signals; mechanics of writing - punctuation, capital letters.

Vocabulary: Technical vocabulary from across technical branches (20) GRE Vocabulary (20)

(Antonyms and Synonyms, Word applications) Verbal reasoning and sequencing of words.

Grammar: Content words and function words; word forms: verbs, nouns, adjectives and adverbs; nouns: countables and uncountables; singular and plural basic sentence structures; simple question form - wh-questions; word order in sentences.

Pronunciation: Vowels, Consonants, Plural markers and their realizations

Unit 2:

Lesson-1: Nehru's letter to his daughter Indira on her birthday from "Infotech English", Maruthi Publications

Lesson-2: Bosom Friend by Hira Bansode from "The Individual Society", Pearson Publications.(Non-detailed)

Listening: Answering a series of questions about main idea and supporting ideas after listening to audio texts, both in speaking and writing.

Speaking: Discussion in pairs/ small groups on specific topics followed by short structured talks. Functional English: Greetings and leave takings.**Reading**: Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together.

Reading for Writing: Summarizing - identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions.

Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary Analogies (20 words) (Antonyms and Synonyms, Word applications)

Grammar: Use of articles and zero article; prepositions.

Pronunciation: Past tense markers, word stress-di-syllabic words

<u>Unit 3:</u>

Lesson-1: Stephen Hawking-Positivity 'Benchmark' from "Infotech English", Maruthi Publications Lesson-2: Shakespeare's Sister by Virginia Woolf from "The Individual Society", Pearson Publications.(Non-detailed)

Listening:Listening for global comprehension and summarizing what is listened to, both in speaking and writing.

Speaking: Discussing specific topics in pairs or small groups and reporting what is discussed. Functional English: Complaining and Apologizing.

Reading: Reading a text in detail by making basic inferences - recognizing and interpreting specific context clues; strategies to use text clues for comprehension.Critical reading.

Reading for Writing: Summarizing - identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions. Letter writing-types, format and principles of letter writing.E-mail etiquette, Writing CV's.

Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Association, sequencing of words

Grammar: Verbs - tenses; subject-verb agreement; direct and indirect speech, reporting verbs for academic purposes.

Pronunciation: word stress-poly-syllabic words.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

<u>Unit 4:</u>

Lesson-1: Liking a Tree, Unbowed: Wangari Maathai-biography from "Infotech English", Maruthi Publications

Lesson-2: Telephone Conversation-Wole Soyinka from "The Individual Society", Pearson Publications.(Non-detailed)

Listening: Making predictions while listening to conversations/ transactional dialogues without video (only audio); listening to audio-visual texts.

Speaking: Role plays for practice of conversational English in academic contexts (formal and informal) - asking for and giving information/directions.Functional English: Permissions, Requesting, Inviting.

Reading: Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicative process or display complicated data.

Reading for Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables.Writing SOP, writing for media.

Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters.

Grammar: Quantifying expressions - adjectives and adverbs; comparing and contrasting; degrees of comparison; use of antonyms

Pronunciation: Contrastive Stress

<u>Unit 5:</u>

Lesson-1: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications

Lesson-2: Still I Rise by Maya Angelou from "The Individual Society", Pearson Publications.(Nondetailed)

Listening: Identifying key terms, understanding concepts and interpreting the concepts both in speaking and writing.

Speaking: Formal oral presentations on topics from academic contexts - without the use of PPT slides. Functional English: Suggesting/Opinion giving.

Reading: Reading for comprehension. RAP StrategyIntensive reading and Extensive reading techniques.

Reading for Writing: Writing academic proposals- writing research articles: format and style.

Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, matching emotions.

Grammar: Editing short texts – identifying and correcting common errors in grammar and usage (articles, prepositions, tenses, subject verb agreement)

Pronunciation: Stress in compound words

Text Books:

1. "Infotech English", Maruthi Publications. (Detailed)

2. "The Individual Society", Pearson Publications. (Non-detailed)

Prescribed text book for Laboratory for Semesters-I & II:

1. "Infotech English", Maruthi Publications. (with Compact Disc)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Reference Books

- 1. Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- 2. Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT; 2nd Edition, 2018.
- 3. Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- 4. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - I Semester		L	Т	P	C
1 Tear - 1 Semester		3	0	0	3
	MATHEMATICS-I				
	(Calculus And Differential Equations)				

Course Objectives:

- To familiarize a variety of well-known sequences and series, with a developing intuition about • the behaviour of new ones.
- To enlighten the learners in the concept of differential equations and multivariable calculus. •
- To equip the students with standard concepts and tools at an intermediate to advanced level • mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

Course Outcomes: At the end of the course, the student will be able to

- utilize mean value theorems to real life problems (L3)
- solve the differential equations related to various engineering fields (L3) •
- familiarize with functions of several variables which is useful in optimization (L3) •
- apply double integration techniques in evaluating areas bounded by region (L3) •
- students will also learn important tools of calculus in higher dimensions. Students will become • familiar with 2- dimensional and 3-dimensional coordinate systems(L5)

UNIT - I: Sequences, Series and Mean value theorems:

Sequences and Series: Convergences and divergence - Ratio test - Comparison tests - Integral test -Cauchy's root test - Alternate series- Leibnitz's rule.

Mean Value Theorems (without proofs): Rolle's Theorem - Lagrange's mean value theorem -Cauchy's mean value theorem - Taylor's and Maclaurin's theorems with remainders, Problems and applications on the above theorem.

UNIT – II: Differential equations of first order and first degree:

Linear differential equations- Bernoulli's equations -Exact equations and equations reducible to exact form.

Applications: Newton's Law of cooling- Law of natural growth and decay- Orthogonal trajectories-Electrical circuits.

UNIT - III: Linear differential equations of higher order:

Homogeneous and Non-homogeneous differential equations of higher order with constant coefficients with non-homogeneous term of the type e^{ax} , sin ax, cos ax, polynomials in xⁿ, $e^{ax}V(x)$ and $x^nV(x) - x^nV(x)$ Method of Variation of parameters, Cauchy and Legendre's linear equations. Applications: LCR circuit, Simple Harmonic motion.

UNIT – IV: Partial differentiation:

Introduction - Homogeneous function - Euler's theorem- Total derivative- Chain rule- Jacobian -Functional dependence – Taylor's and MacLaurin's series expansion of functions of two variables. Applications: Maxima and Minima of functions of two variables without constraints and Lagrange's method.

(10hrs)

(10hrs)

(10hrs)

(10hrs)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIT – V: Multiple integrals:

(8 hrs)

Double and Triple integrals – Change of order of integration in double integrals – Change of variables to polar, cylindrical and spherical coordinates. Applications: Finding Areas and Volumes.

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- 2. B. V. Ramana, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

Reference Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India.
- 2. Joel Hass, Christopher Heil and Maurice D. Weir, Thomas calculus, 14thEdition, Pearson.
- 3. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 2013.
- 4. Srimantha Pal, S C Bhunia, Engineering Mathematics, Oxford University Press.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Veen I Comester		L	Т	Р	С	
I Year - I Semester		3	0	0	3	
	APPLIED PHYSICS					
(For A	(For All Circuital Branches like ECE, EEE, CSE etc)					

Course Objectives:

- 1. Bridging the gap between the physics in school at 10+2 level and UG level engineering courses.
- 2. To identify the importance of the optical phenomenon i.e. interference, diffraction and polarization related to its Engineering applications
- 3. Understand the mechanism of emission of light, utilization of lasers as coherent light sources for low and high energy applications, study of propagation of light through optical fibers and their implications in optical communications.
- 4. Enlightenment of the concepts of Quantum Mechanics and to provide fundamentals of deBroglie matter waves, quantum mechanical wave equation and its application, the importance of free electron theory for metals and band theory for crystalline solids. Metals-Semiconductors-Insulators concepts utilization of transport phenomenon of charge carriers in semiconductors.
- 5. To explain the significant concepts of dielectric and magnetic materials that leads to potential applications in the emerging micro devices.
- 6. To Understand the physics of Semiconductors and their working mechanism. To give an impetus on the subtle mechanism of superconductors using the concept of BCS theory and their fascinating applications.

Course Outcomes:

- 1. Explain the need of coherent sources and the conditions for sustained interference (L2). Identify the applications of interference in engineering (L3). Analyze the differences between interference and diffraction with applications (L4). Illustrate the concept of polarization of light and its applications (L2). Classify ordinary refracted light and extraordinary refracted rays by their states of polarization (L2)
- Explain various types of emission of radiation (L2). Identify the role of laser in engineering applications (L3). Describe the construction and working principles of various types of lasers (L1). Explain the working principle of optical fibers (L2). Classify optical fibers based on refractive index profile and mode of propagation (L2). Identify the applications of optical fibers in medical, communication and other fields (L2). Apply the fiber optic concepts in various fields (L3).
- 3. Describe the dual nature of matter (L1). Explain the significance of wave function (L2). Identify the role of Schrodinger's time independent wave equation in studying particle in onedimensional infinite potential well (L3). Identify the role of classical and quantum free electron theory in the study of electrical conductivity (L3). Classify the energy bands of solids (L2).

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

- 4. Explain the concept of dielectric constant and polarization in dielectric materials (L2). Summarize various types of polarization of dielectrics (L2). Interpret Lorentz field and Claussius-Mosotti relation in dielectrics (L2). Classify the magnetic materials based on susceptibility and their temperature dependence (L2). Explain the applications of dielectric and magnetic materials (L2). Apply the concept of magnetism to magnetic devices (L3)
- 5. Outline the properties of charge carriers in semiconductors (L2). Identify the type of semiconductor using Hall effect (L2). Identify applications of semiconductors in electronic devices (L2). Classify superconductors based on Meissner's effect (L2). Explain Meissner's effect, BCS theory & Josephson effect in superconductors (L2).

Unit-I: Wave Optics

12hrs

Interference: Principle of superposition –Interference of light - Interference in thin films (Reflection Geometry) & applications - Colors in thin films- Newton's Rings- Determination of wavelength and refractive index.

Diffraction: Introduction - Fresnel and Fraunhofer diffraction - Fraunhofer diffraction due to single slit, double slit - N-slits (Qualitative) – Diffraction Grating - Dispersive power and resolving power of Grating(Qualitative).

Polarization: Introduction-Types of polarization - Polarization by reflection, refraction and Double refraction - Nicol's Prism -Half wave and Quarter wave plates.

Unit Outcomes:

The students will be able to

- **Explain** the need of coherent sources and the conditions for sustained interference (L2)
- Identify engineering applications of interference (L3)
- > Analyze the differences between interference and diffraction with applications (L4)
- > **Illustrate** the concept of polarization of light and its applications (L2)
- > Classify ordinary polarized light and extraordinary polarized light (L2)

Unit-II: Lasers and Fiber optics

8hrs

Lasers: Introduction – Characteristics of laser – Spontaneous and Stimulated emissions of radiation – Einstein's coefficients – Population inversion – Lasing action - Pumping mechanisms – Ruby laser – He-Ne laser - Applications of lasers.

Fiber optics: Introduction –Principle of optical fiber- Acceptance Angle - Numerical Aperture - Classification of optical fibers based on refractive index profile and modes – Propagation of electromagnetic wave through optical fibers - Applications.

Unit Outcomes:

The students will be able to

- > **Understand** the basic concepts of LASER light Sources (L2)
- > Apply the concepts to learn the types of lasers (L3)
- Identifies the Engineering applications of lasers (L2)
- **Explain** the working principle of optical fibers (L2)
- Classify optical fibers based on refractive index profile and mode of propagation (L2)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

> Identify the applications of optical fibers in various fields (L2)

Unit III: Quantum Mechanics, Free Electron Theory and Band theory10hrsQuantum Mechanics: Dual nature of matter – Heisenberg's Uncertainty Principle – Significance and
properties of wave function – Schrodinger's time independent and dependent wave equations– Particle
in a one-dimensional infinite potential well.10hrs

Free Electron Theory: Classical free electron theory (Qualitative with discussion of merits and demerits) – Quantum free electron theory– Equation for electrical conductivity based on quantum free electron theory- Fermi-Dirac distribution- Density of states (3D) - Fermi energy.

Band theory of Solids: Bloch's Theorem (Qualitative) - Kronig - Penney model (Qualitative)-

E vs K diagram - v vs K diagram - effective mass of electron – Classification of crystalline solids– concept of hole.

Unit Outcomes:

The students will be able to

- **Explain** the concept of dual nature of matter (L2)
- > **Understand** the significance of wave function (L2)
- > Interpret the concepts of classical and quantum free electron theories (L2)
- **Explain** the importance of K-P model
- Classify the materials based on band theory (L2)
- > Apply the concept of effective mass of electron (L3)

Unit-IV: Dielectric and Magnetic Materials

8hrs

Dielectric Materials: Introduction - Dielectric polarization - Dielectric polarizability, Susceptibility and Dielectric constant - Types of polarizations- Electronic (Quantitative), Ionic (Quantitative) and Orientation polarizations (Qualitative) - Lorentz internal field- Clausius-Mossotti equation-Piezoelectricity.

Magnetic Materials: Introduction - Magnetic dipole moment - Magnetization-Magnetic susceptibility and permeability - Origin of permanent magnetic moment - Classification of magnetic materials: Dia, para, Ferro, antiferro & Ferri magnetic materials - Domain concept for Ferromagnetism & Domain walls (Qualitative) - Hysteresis - soft and hard magnetic materials- Eddy currents- Engineering applications.

Unit Outcomes: The students will be able to

- **Explain** the concept of dielectric constant and polarization in dielectric materials (L2)
- Summarize various types of polarization of dielectrics (L2)
- Interpret Lorentz field and Claussius- Mosotti relation in dielectrics(L2)
- Classify the magnetic materials based on susceptibility and their temperature dependence (L2)
- **Explain** the applications of dielectric and magnetic materials (L2)
- > Apply the concept of magnetism to magnetic data storage devices (L3)

Unit – V: Semiconductors and Superconductors

Semiconductors: Introduction- Intrinsic semiconductors – Density of charge carriers – Electrical conductivity – Fermi level – extrinsic semiconductors – density of charge carriers – dependence of Fermi energy on carrier concentration and temperature - Drift and diffusion currents – Einstein's equation- Hall effect – Hall coefficient –Applications of Hall effect.

10hrs

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

 $\label{eq:superconductors} \begin{array}{l} \textbf{Superconductors} - \textbf{Meissner effect} - \textbf{Type I and Type II} \\ \textbf{superconductors} - \textbf{BCS theory (Qualitative)} - \textbf{Josephson effects (AC and DC)} - \textbf{SQUIDs} - \textbf{High } \textbf{T}_c \\ \textbf{superconductors} - \textbf{Applications of superconductors}. \end{array}$

Unit Outcomes:

The students will be able to

- > **Classify** the energy bands of semiconductors (L2)
- > **Interpret** the direct and indirect band gap semiconductors (L2)
- > **Identify** the type of semiconductor using Hall effect (L2)
- > Identify applications of semiconductors in electronic devices (L2)
- Classify superconductors based on Meissner's effect (L2)
- **Explain** Meissner's effect, BCS theory & Josephson effect in superconductors (L2)

Text books:

- 1. M. N. Avadhanulu, P.G.Kshirsagar & TVS Arun Murthy" A Text book of Engineering Physics"- S.Chand Publications, 11th Edition 2019.
- 2. Engineering Physics" by D.K.Bhattacharya and Poonam Tandon, Oxford press (2015).
- 3. Applied Physics by P.K.Palanisamy SciTech publications.

Reference Books:

- 1. Fundamentals of Physics Halliday, Resnick and Walker, John Wiley & Sons
- 2. Engineering Physics by M.R.Srinivasan, New Age international publishers (2009).
- 3. Shatendra Sharma, Jyotsna Sharma, "Engineering Physics", Pearson Education, 2018
- 4. Engineering Physics Sanjay D. Jain, D. Sahasrabudhe and Girish, University Press
- 5. Semiconductor physics and devices- Basic principle Donald A, Neamen, Mc Graw Hill
- 6. B.K. Pandey and S. Chaturvedi, Engineering Physics, Cengage Learning

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - I Semester		L	Т	Р	С				
1 i ear - i Semester		3	0	0	3				
PROGE	PROGRAMMING FOR PROBLEM SOLVING USING C								

Course Objectives:

The objectives of Programming for Problem Solving Using C are

- To learn about the computer systems, computing environments, developing of a computer program and Structure of a C Program
- To gain knowledge of the operators, selection, control statements and repetition in C
- To learn about the design concepts of arrays, strings, enumerated structure and union types and their usage.
- To assimilate about pointers, dynamic memory allocation and know the significance of Preprocessor.
- To assimilate about File I/O and significance of functions

Course Outcomes:

Upon the completion of the course the student will learn

- To write algorithms and to draw flowcharts for solving problems
- To convert flowcharts/algorithms to C Programs, compile and debug programs
- To use different operators, data types and write programs that use two-way/ multi-way selection
- To select the best loop construct for a given problem
- To design and implement programs to analyze the different pointer applications
- To decompose a problem into functions and to develop modular reusable code
- To apply File I/O operations

UNIT I

Introduction to Computers: Creating and running Programs, Computer Numbering System, Storing Integers, Storing Real Numbers

Introduction to the C Language: Background, C Programs, Identifiers, Types, Variable, Constants, Input/output, Programming Examples, Scope, Storage Classes and Type Qualifiers.

Structure of a C Program: Expressions Precedence and Associativity, Side Effects, Evaluating Expressions, Type Conversion Statements, Simple Programs, Command Line Arguments.

UNIT II

Bitwise Operators: Exact Size Integer Types, Logical Bitwise Operators, Shift Operators.

Selection & Making Decisions: Logical Data and Operators, Two Way Selection, Multiway Selection, More Standard Functions.

Repetition: Concept of Loop, Pretest and Post-test Loops, Initialization and Updating, Event and Counter Controlled Loops, Loops in C, Other Statements Related to Looping, Looping Applications, Programming Examples.

UNIT III

Arrays: Concepts, Using Array in C, Array Application, Two Dimensional Arrays, Multidimensional Arrays, Programming Example – Calculate Averages

Strings: String Concepts, C String, String Input / Output Functions, Arrays of Strings, String Manipulation Functions String/ Data Conversion, A Programming Example – Morse Code Enumerated, Structure, and Union: The Type Definition (Type def), Enumerated Types, Structure, Unions, and Programming Application.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIT IV

Pointers: Introduction, Pointers to pointers, Compatibility, L value and R value Pointer Applications: Arrays, and Pointers, Pointer Arithmetic and Arrays, Memory Allocation Function, Array of Pointers, Programming Application. Processor Commands: Processor Commands.

UNIT V

Functions: Designing, Structured Programs, Function in C, User Defined Functions, Inter-Function Communication, Standard Functions, Passing Array to Functions, Passing Pointers to Functions, Recursion

Text Input / Output: Files, Streams, Standard Library Input / Output Functions, Formatting Input / Output Functions, Character Input / Output Functions

Binary Input / Output: Text versus Binary Streams, Standard Library, Functions for Files, Converting File Type.

Text Books:

- 1) Programming for Problem Solving, Behrouz A. Forouzan, Richard F.Gilberg, CENGAGE.
- 2) The C Programming Language, Brian W.Kernighan, Dennis M. Ritchie, 2e, Pearson.

Reference Books:

- 1) Computer Fundamentals and Programming, Sumithabha Das, Mc Graw Hill.
- 2) Programming in C, Ashok N. Kamthane, Amit Kamthane, Pearson.
- 3) Computer Fundamentals and Programming in C, Pradip Dey, Manas Ghosh, OXFORD.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - I Semester		L	Τ	P	С
1 Tear - I Semester		1	0	4	3
CO	OMPUTER ENGINEERING WORKSHOP				

Course Objectives:

The objective of this course is to

- Explain the internal parts of a computer, peripherals, I/O ports, connecting cables
- Demonstrate basic command line interface commands on Linux
- Teach the usage of Internet for productivity and self paced lifelong learning
- Describe about Compression, Multimedia and Antivirus tools
- Demonstrate Office Tools such as Word processors, Spreadsheets and Presentation tools

Course Outcomes:

Students should be able to:

- Assemble and disassemble components of a PC
- Construct a fully functional virtual machine, Summarize various Linux operating system commands,
- Recognize characters & extract text from scanned images, Create audio files and podcasts

Computer Hardware:

Experiment 1: Identification of peripherals of a PC, Laptop, Server and Smart Phones: Prepare a report containing the block diagram along with the configuration of each component and its functionality, Input/ Output devices, I/O ports and interfaces, main memory, cache memory and secondary storage technologies, digital storage basics, networking components and speeds.

Operating Systems:

Experiment 2: Virtual Machine setup:

- Setting up and configuring a new Virtual Machine
- Setting up and configuring an existing Virtual Machine
- Exporting and packaging an existing Virtual Machine into a portable format

Experiment 2: Operating System installation:

• Installing an Operating System such as Linux on Computer hardware. Experiment 3: Linux Operating System commands:

- General command syntax
- Basic *help* commands
- Basic File system commands
- o Date and Time
- Basic Filters and Text processing
- Basic File compression commands
- Miscellaneous: apt-get, vi editor

Networking and Internet:

Experiment 4: Networking Commands:

o ping, ssh, ifconfig, scp, netstat, ipstat, nslookup, traceroute, telnet, host, ftp, arp, wget,route Experiment 5: Internet Services:

• Web Browser usage and advanced settings like LAN, proxy, content, privacy, security, cookies, extensions/ plugins

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

- Antivirus installation, configuring a firewall, blocking pop-ups
- Email creation and usage, Creating a Digital Profile on LinkedIn

Productivity Tools:

Experiment 6: Basic HTML tags, Introduction to HTML5 and its tags, Introduction to CSS3 and its properties. Preparation of a simple website/ homepage,

Assignment: Develop your home page using HTML Consisting of your photo, name, address and education details as a table and your skill set as a list.

Features to be covered:- Layouts, Inserting text objects, Editing text objects, Inserting Tables, Working with menu objects, Inserting pages, Hyper linking, Renaming, deleting, modifying pages, etc.,

Internet of Things (IoT): IoT fundamentals, applications, protocols, communication models, architecture, IoT devices

Office Tools:

Experiment 7: Demonstration and Practice on Text Editors like Notepad++, Sublime Text, Atom, Brackets, Visual code, etc

Experiment 8: Demonstration and practice on Microsoft Word, Power Point, Microsoft Excel

Experiment 10: Demonstration and practice on LaTeX and produce professional pdf documents.

Text Books:

- 1) Computer Fundamentals, Anita Goel, Pearson Education, 2017
- 2) PC Hardware Trouble Shooting Made Easy, TMH

References Books:

1) Essential Computer and IT Fundamentals for Engineering and Science Students, Dr.N.B.Vekateswarlu, S.Chand

e-Resources:

1) <u>https://explorersposts.grc.nasa.gov/post631/2006-2007/computer_basics/ComputerPorts.doc</u>

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - I Semester		L	Т	Р	С			
		0	0	3	1.5			
ENCLISH COMMUNICATION SKILLS LABORATORY								

UNIT I:

Vowels, Consonants, Pronunciation, Phonetic Transcription, Common Errors in Pronunciation,

UNIT II:

Word stress-di-syllabic words, poly-syllabic words, weak and strong forms, contrastive stress (Homographs)

- **UNIT III:** Stress in compound words, rhythm, intonation, accent neutralisation.
- **UNIT IV:** Listening to short audio texts and identifying the context and specific pieces of information toanswer a series of questions in speaking.
- **UNIT V:** Newspapers reading; Understanding and identifying key terms and structures useful for writing reports.

Text Book:

1."Infotech English", Maruthi Publications.

Reference Books:

- 1. Exercises in Spoken English Part 1,2,3,4, OUP and CIEFL.
- 2. English Pronunciation in use- Mark Hancock, Cambridge University Press.
- 3. English Phonetics and Phonology-Peter Roach, Cambridge University Press.
- 4. English Pronunciation in use- Mark Hewings, Cambridge University Press.
- 5. English Pronunciation Dictionary- Daniel Jones, Cambridge University Press.
- 6. English Phonetics for Indian Students- P. Bala Subramanian, Mac Millan Publications.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - I Semester		L	Т	Р	С	
1 Year - 1 Semester		0	0	3	1.5	
APPLIED PHYSICS LAB						

(For All Circuital Branches like CSE, ECE, EEE etc.)

(Any 10 of the following listed experiments)

List of Applied Physics Experiments

- 1. Determination of thickness of thin object by wedge method.
- 2. Determination of radius of curvature of a given plano convex lens by Newton's rings.
- 3. Determination of wavelengths of different spectral lines in mercury spectrum using diffraction grating in normal incidence configuration.
- 4. Determination of dispersive power of the prism.
- 5. Determination of dielectric constant using charging and discharging method.
- 6. Study the variation of B versus H by magnetizing the magnetic material (B-H curve).
- 7. Determination of numerical aperture and acceptance angle of an optical fiber.
- 8. Determination of wavelength of Laser light using diffraction grating.
- 9. Estimation of Planck's constant using photoelectric effect.
- 10. Determination of the resistivity of semiconductor by four probe method.
- 11. To determine the energy gap of a semiconductor using p-n junction diode.
- 12. Magnetic field along the axis of a current carrying circular coil by Stewart & Gee's Method
- 13. Determination of Hall voltage and Hall coefficient of a given semiconductor using Hall Effect .
- 14. Measurement of resistance of a semiconductor with varying temperature.
- 15. Resistivity of a Superconductor using four probe method & Meissner effect.

References:

1. S. Balasubramanian, M.N. Srinivasan "A Text Book of Practical Physics"- S Chand Publishers, 2017.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - I Semester		L	Τ	Р	С	
		0	0	3	1.5	

PROGRAMMING FOR PROBLEM SOLVING USING C LAB

Course Objectives:

- Apply the principles of C language in problem solving.
- To design flowcharts, algorithms and knowing how to debug programs.
- To design & develop of C programs using arrays, strings pointers & functions.
- To review the file operations, preprocessor commands.

Course Outcomes:

By the end of the Lab, the student

- Gains Knowledge on various concepts of a C language.
- Able to draw flowcharts and write algorithms.
- Able design and development of C problem solving skills.
- Able to design and develop modular programming skills.
- Able to trace and debug a program

Exercise 1:

- 1. Write a C program to print a block F using hash (#), where the F has a height of six characters and width of five and four characters.
- 2. Write a C program to compute the perimeter and area of a rectangle with a height of 7 inches and width of 5 inches.
- 3. Write a C program to display multiple variables.

Exercise 2:

- 1. Write a C program to calculate the distance between the two points.
- 2. Write a C program that accepts 4 integers p, q, r, s from the user where r and s are positive and p is even. If q is greater than r and s is greater than p and if the sum of r and s is greater than the sum of p and q print "Correct values", otherwise print "Wrong values".

Exercise 3:

- 1. Write a C program to convert a string to a long integer.
- 2. Write a program in C which is a Menu-Driven Program to compute the area of the various geometrical shape.
- 3. Write a C program to calculate the factorial of a given number.

Exercise 4:

- 1. Write a program in C to display the n terms of even natural number and their sum.
- 2. Write a program in C to display the n terms of harmonic series and their sum. $1 + 1/2 + 1/3 + 1/4 + 1/5 \dots 1/n$ terms.
- 3. Write a C program to check whether a given number is an Armstrong number or not.

Exercise 5:

- 1. Write a program in C to print all unique elements in an array.
- 2. Write a program in C to separate odd and even integers in separate arrays.
- 3. Write a program in C to sort elements of array in ascending order.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Exercise 6:

- 1. Write a program in C for multiplication of two square Matrices.
- 2. Write a program in C to find transpose of a given matrix.

Exercise 7:

- 1. Write a program in C to search an element in a row wise and column wise sorted matrix.
- 2. Write a program in C to print individual characters of string in reverse order.

Exercise 8:

- 1. Write a program in C to compare two strings without using string library functions.
- 2. Write a program in C to copy one string to another string.

Exercise 9:

- 1. Write a C Program to Store Information Using Structures with Dynamically Memory Allocation
- 2. Write a program in C to demonstrate how to handle the pointers in the program.

Exercise 10:

- 1. Write a program in C to demonstrate the use of & (address of) and *(value at address) operator.
- 2. Write a program in C to add two numbers using pointers.

Exercise 11:

- 1. Write a program in C to add numbers using call by reference.
- 2. Write a program in C to find the largest element using Dynamic Memory Allocation.

Exercise 12:

- 1. Write a program in C to swap elements using call by reference.
- 2. Write a program in C to count the number of vowels and consonants in a string using a pointer.

Exercise 13:

- 1. Write a program in C to show how a function returning pointer.
- 2. Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using malloc() function.

Exercise 14:

- 1. Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using calloc() function. Understand the difference between the above two programs
- 2. Write a program in C to convert decimal number to binary number using the function.

Exercise 15:

- 1. Write a program in C to check whether a number is a prime number or not using the function.
- 2. Write a program in C to get the largest element of an array using the function.

Exercise 16:

- 1. Write a program in C to append multiple lines at the end of a text file.
- 2. Write a program in C to copy a file in another name.
- 3. Write a program in C to remove a file from the disk.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE STRUCTURE AND SYLLABUS

For UG -R20

B. TECH - COMPUTER SCIENCE & ENGINEERING

(Applicable for batches admitted from 2020-2021)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA - 533 003, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

	I Year – I SEMESTER							
S. No	Course Code	Courses	L	Т	Р	Credits		
1	HS	Communicative English	3	0	0	3		
2	BS	Mathematics - I (Calculus And Differential Equations)	3	0	0	3		
3	BS	Applied Physics	3	0	0	3		
4	ES	Programming for Problem Solving using C	3	0	0	3		
5	ES	Computer Engineering Workshop	1	0	4	3		
6	HS	English Communication Skills Laboratory	0	0	3	1.5		
7	BS	Applied Physics Lab	0	0	3	1.5		
8	ES	Programming for Problem Solving using C Lab	0	0	3	1.5		
	Total Credits					19.5		

COURSE STRUCTURE

	I Year – II SEMESTER							
S. No	Course Code	Courses	L	Т	Р	Credits		
1	BS	Mathematics – II (Linear Algebra And Numerical Methods)	3	0	0	3		
2	BS	Applied Chemistry	3	0	0	3		
3	ES	Computer Organization	3	0	0	3		
4	ES	Python Programming	3	0	0	3		
5	ES	Data Structures	3	0	0	3		
6	BS	Applied Chemistry Lab	0	0	3	1.5		
7	ES	Python Programming Lab	0	0	3	1.5		
8	ES	Data Structures Lab	0	0	3	1.5		
9	MC	Environment Science	2	0	0	0		
	Total Credits				1	19.5		

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - II Semester		L	Τ	P	С	
		3	0	0	3	
	MATHEMATICS-II					
	(Linear Algebra And Numerical Methods)					

Course Objectives:

- To instruct the concept of Matrices in solving linear algebraic equations
- To elucidate the different numerical methods to solve nonlinear algebraic equations
- To disseminate the use of different numerical techniques for carrying out numerical integration.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

Course Outcomes: At the end of the course, the student will be able to

- develop the use of matrix algebra techniques that is needed by engineers for practical applications (L6)
- solve system of linear algebraic equations using Gauss elimination, Gauss Jordan, Gauss Seidel (L3)
- evaluate the approximate roots of polynomial and transcendental equations by different algorithms (L5)
- apply Newton's forward & backward interpolation and Lagrange's formulae for equal and unequal intervals (L3)
- apply numerical integral techniques to different Engineering problems (L3)
- apply different algorithms for approximating the solutions of ordinary differential equations with initial conditions to its analytical computations (L3)

UNIT – I: Solving systems of linear equations, Eigen values and Eigen vectors: (10hrs)

Rank of a matrix by echelon form and normal form – Solving system of homogeneous and non-homogeneous linear equations – Gauss Eliminationmethod – Eigenvalues and Eigen vectors and properties (article-2.14 in text book-1).

Unit – II: Cayley–Hamilton theorem and Quadratic forms:

Cayley-Hamilton theorem (without proof) – Applications – Finding the inverse and power of a matrix by Cayley-Hamilton theorem – Reduction to Diagonal form – Quadratic forms and nature of the quadratic forms – Reduction of quadratic form to canonical forms by orthogonal transformation. Singular values of a matrix, singular value decomposition (text book-3).

UNIT – III: Iterative methods:

Introduction– Bisection method–Secant method – Method of false position– Iteration method – Newton-Raphson method (One variable and simultaneous Equations) – Jacobi and Gauss-Seidel methods for solving system of equations numerically.

UNIT – IV: Interpolation:

Introduction– Errors in polynomial interpolation – Finite differences– Forward differences– Backward differences – Central differences – Relations between operators – Newton's forward and backward formulae for interpolation – Interpolation with unequal intervals – Lagrange's interpolation formula– Newton's divide difference formula.

(8 hrs)

(**10 hrs**)

(10hrs)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIT – V: Numerical differentiation and integration, Solution of ordinary differential equations with initial conditions: (10 hrs)

Numerical differentiation using interpolating polynomial – Trapezoidal rule– Simpson's 1/3rd and 3/8th rule– Solution of initial value problems by Taylor's series– Picard's method of successive approximations– Euler's method –Runge-Kutta method (second and fourth order).

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- 2. B. V. Ramana, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.
- 3. David Poole, Linear Algebra- A modern introduction, 4th Edition, Cengage.

Reference Books:

- 1. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering and Science, Tata Mc. Graw Hill Education.
- 2. M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications.
- 3. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Voor II Somostor		L	Т	P	С		
I Year - II Semester		3	0	0	3		
	APPLIED CHEMISTRY						

Course Objectives

- Importance of usage of plastics in household appliances and composites (FRP) in aerospace and automotive industries.
- Outline the basics for the construction of electrochemical cells, batteries and fuel cells. Understand the mechanism of corrosion and how it can be prevented.
- Explain the preparation of semiconductors and nanomaterials, engineering applications of nanomaterials, superconductors and liquid crystals.
- Recall the increase in demand for power and hence alternative sources of power are studied due to depleting sources of fossil fuels. Advanced instrumental techniques are introduced.
- Outline the basics of computational chemistry and molecular switches

UNIT I: POLYMER TECHNOLOGY

8 hrs

Polymerisation:- Introduction, methods of polymerization (emulsion and suspension), mechanical properties.

Plastics: Compounding, fabrication (compression, injection, blown film and extrusion), preparation, properties and applications (PVC, polycarbonates and Bakelite), mention some examples of plastic materials used in electronic gadgets, recycling of e-plastic waste (waste to wealth).

Elastomers:- Introduction, preparation, properties and applications (Buna S, thiokol and polyurethanes). Composite materials: Fiber reinforced plastics, conducting polymers, biodegradable polymers, biopolymers, biomedical polymers.

Course Outcomes: At the end of this unit, the students will be able to

• Analyze the different types of composite plastic materials and interpret the mechanism of conduction in conducting polymers.

UNIT II: ELECTROCHEMICAL CELLS AND CORROSION

Single electrode potential, electrochemical series and uses of series, standard hydrogen electrode, calomel electrode, construction of glass electrode, batteries (Dry cell, Li ion battery and zinc air cells), fuel cells (H₂-O₂, CH₃OH-O₂, phosphoric acid and molten carbonate).

Corrosion:-Definition, theories of corrosion (chemical and electrochemical), galvanic corrosion, differential aeration corrosion, stress corrosion, galvanic series, factors influencing rate of corrosion, corrosion control (proper designing and cathodic protection), Protective coatings (surface preparation, cathodic coatings, anodic coatings, electroplating and electroless plating [nickel]), Paints (constituents, functions and special paints).

Course Outcomes: At the end of this unit, the students will be able to

• Utilize the theory of construction of electrodes, batteries and fuel cells in redesigning new engineering products and categorize the reasons for corrosion and study methods to control corrosion.

10 hrs

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIT III: MATERIAL CHEMISTRY

Part I : Non-elemental semiconducting materials:- Stoichiometric, controlled valency & chalcogen photo/semiconductors-preparation of semiconductors (distillation, zone refining, Czochralski crystal pulling, epitaxy, diffusion, ion implantation) - Semiconductor devices (p-n junction diode as rectifier, junction transistor).

Insulators & magnetic materials: electrical insulators-ferro and ferri magnetism-Hall effect and its applications.

Part II: Nano materials:- Introduction, sol-gel method, characterization by (Brunauer Emmet Teller [BET]), (scanning electron microscopy [SEM]) and (transmission electron microscopy [TEM]), applications of graphene and fullerenes, carbon nanotubes (types, preparation and applications) Liquid crystals:- Introduction-types-applications.

Super conductors:-Type –I, Type II-characteristics and applications

Course Outcomes: At the end of this unit, the students will be able to

- Synthesize nanomaterials for modern advances of engineering technology.
- Summarize the preparation of semiconductors; analyze the applications of liquid crystals and • superconductors.

UNIT IV: SPECTROSCOPIC TECHNIQUES & NON-CONVENTIONAL ENERGY SOURCES 10 hrs

Part A: SPECTROSCOPIC TECHNIQUES

Electromagnetic spectrum-UV (laws of absorption, instrumentation, theory of electronic spectroscopy, Frank-condon principle, chromophores and auxochromes, intensity shifts, applications), FT-IR [instrumentation and differentiation of sp, sp², sp³ and IR stretching of functional groups (alcohols, carbonyls, amines) applications], magnetic resonance imaging and CT scan (procedure & applications).

Part B: NON-CONVENTIONAL ENERGY SOURCES

Design, working, schematic diagram, advantages and disadvantages of photovoltaic cell, hydropower, geothermal power, tidal and wave power, ocean thermal energy conversion.

Course Outcomes: At the end of this unit, the students will be able to

- Analyze the principles of different analytical instruments and their applications.
- Design models for energy by different natural sources.

UNIT V: ADVANCED CONCEPTS/TOPICS IN CHEMISTRY

Computational chemistry: Introduction to computational chemistry, molecular modelling and docking studies

Molecular switches: characteristics of molecular motors and machines, Rotaxanes and Catenanes as artificial molecular machines, prototypes - linear motions in rotaxanes, an acid-base controlled molecular shuttle, a molecular elevator, an autonomous light-powered molecular motor

Course Outcomes: At the end of this unit, the students will be able to

Obtain the knowledge of computational chemistry and molecular machines •

Text Books:

- 1. P.C. Jain and M. Jain "Engineering Chemistry", 15/e, Dhanpat Rai & Sons, Delhi, (Latest edition).
- 2. Shikha Agarwal, "Engineering Chemistry", Cambridge University Press, New Delhi, (2019).
- 3. S.S. Dara, "A Textbook of Engineering Chemistry", S.Chand & Co, (2010).
- 4. Shashi Chawla, "Engineering Chemistry", Dhanpat Rai Publicating Co. (Latest edition).

10 hrs

8 hrs

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Reference Books:

- 1. K. Sesha Maheshwaramma and Mridula Chugh, "Engineering Chemistry", Pearson India Edn.
- 2. O.G. Palana, "Engineering Chemistry", Tata McGraw Hill Education Private Limited, (2009).
- 3. CNR Rao and JM Honig (Eds) "Preparation and characterization of materials" Academic press, New York (latest edition)
- 4. B. S. Murthy, P. Shankar and others, "Textbook of Nanoscience and Nanotechnology", University press (latest edition)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Voor II Comoston		L	Τ	Ρ	С
I Year - II Semester		3	0	0	3
	COMPUTER ORGANIZATION				

Course Objectives:

The purpose of the course is to introduce principles of computer organization and the basic architectural concepts. It provides an in depth understanding of basic organization, design, programming of a simple digital computer, computer arithmetic, instruction set design, microprogrammed control unit, pipelining and vector processing, memory organization and I/O systems.

Course Outcomes:

By the end of the course the student will be able to

- Demonstrate and understanding of the design of the functional units of a digital computer system.
- Relate Postulates of Boolean algebra and minimize combinational functions
- Recognize and manipulate representations of numbers stored in digital computers
- Build the logic families and realization of logic gates.
- Design and analyze combinational and sequential circuits
- Recall the internal organization of computers, CPU, memory unit and Input/Outputs and the relations between its main components
- Solve elementary problems by assembly language programming

UNIT I:

Digital Computers and Data Representation: Introduction ,Numbering Systems, Decimal to Binary Conversion, Binary Coded Decimal Numbers, Weighted Codes, Self-Complementing Codes, Cyclic Codes, Error Detecting Codes, Error Correcting Codes, Hamming Code for Error Correction, Alphanumeric Codes, ASCI Code

Data Representation: Data types, Complements, Fixed Point Representation, Floating Point Representation.

Boolean Algebra and Logical gates:

Boolean Algebra :Theorems and properties, Boolean functions, canonical and standard forms , minimization of Boolean functions using algebraic identities; Karnaugh map representation and minimization using two and three variable Maps ;Logical gates ,universal gates and Two-level realizations using gates : AND-OR, OR-AND, NAND-NAND and NOR-NOR structures

UNIT II:

Digital logic circuits: Combinatorial Circuits: Introduction, Combinatorial Circuit Design Procedure, Implementation using universal gates, Multi-bit adder, Multiplexers, Demultiplexers, Decoders

Sequential Switching Circuits: Latches and Flip-Flops, Ripple counters using T flip-flops; Synchronous counters: Shift Registers; Ring counters

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIT III:

Computer Arithmetic: Addition and subtraction, multiplication Algorithms, Booth multiplication algorithm, Division Algorithms, Floating – point Arithmetic operations.

Register Transfer language and microinstructions :Bus memory transfer, arithmetic and logical micro-operations, shift and rotate micro-operations

Basic Computer Organization and Design: Stored program concept, computer Registers, common bus system, Computer instructions, Timing and Control, Instruction cycle, Memory Reference Instructions, Input–Output configuration and program Interrupt.

UNIT IV:

Microprogrammed Control: Control memory, Address sequencing, microprogram example, design of control unit.

Central Processing Unit: General Register Organization, Instruction Formats, Addressing modes, Data Transfer and Manipulation, Program Control: conditional Flags and Branching

UNIT V:

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory, Associate Memory, Cache Memory.

Input-Output Organization: Input-Output Interface, Asynchronous data transfer, Modes of Transfer, Priority Interrupt Direct memory Access.

Text Books:

- 1. Digital Logic and Computer Design, Moriss Mano, 11thEdition, PearsonEducation.
- 2. Computer System Architecture,3rded., M.MorrisMano, PHI

Reference Books:

1. Digital Logic and Computer Organization, Rajaraman, Radhakrishnan, PHI, 2006

2. Computer Organization, 5thed.,Hamacher, VranesicandZaky,TMH,2002

3. Computer Organization & Architecture :Designing for Performance, 7thed., William Stallings, PHI, 2006

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Voon II Comoston		L	Т	P	C
I Year – II Semester		3	0	0	3
	PYTHON PROGRAMMING				

Course Objectives:

The Objectives of Python Programming are

- To learn about Python programming language syntax, semantics, and the runtime environment
- To be familiarized with universal computer programming concepts like data types, containers
- To be familiarized with general computer programming concepts like conditional execution, loops & functions
- To be familiarized with general coding techniques and object-oriented programming

Course Outcomes:

- Develop essential programming skills in computer programming concepts like data types, containers
- Apply the basics of programming in the Python language
- Solve coding tasks related conditional execution, loops
- Solve coding tasks related to the fundamental notions and techniques used in objectoriented programming

UNIT I

Introduction: Introduction to Python, Program Development Cycle, Input, Processing, and Output, Displaying Output with the Print Function, Comments, Variables, Reading Input from the Keyboard, Performing Calculations, Operators. Type conversions, Expressions, More about Data Output.

Data Types, and Expression: Strings Assignment, and Comment, Numeric Data Types and Character Sets, Using functions and Modules.

Decision Structures and Boolean Logic: if, if-else, if-elif-else Statements, Nested Decision Structures, Comparing Strings, Logical Operators, Boolean Variables. Repetition Structures: Introduction, while loop, for loop, Calculating a Running Total, Input Validation Loops, Nested Loops.

UNIT II

Control Statement: Definite iteration for Loop Formatting Text for output, Selection if and if else Statement Conditional Iteration The While Loop

Strings and Text Files: Accessing Character and Substring in Strings, Data Encryption, Strings and Number Systems, String Methods Text Files.

UNIT III

List and Dictionaries: Lists, Defining Simple Functions, Dictionaries

Design with Function: Functions as Abstraction Mechanisms, Problem Solving with Top Down Design, Design with Recursive Functions, Case Study Gathering Information from a File System, Managing a Program's Namespace, Higher Order Function.

Modules: Modules, Standard Modules, Packages.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIT IV

File Operations: Reading config files in python, Writing log files in python, Understanding read functions, read(), readline() and readlines(), Understanding write functions, write() and writelines(), Manipulating file pointer using seek, Programming using file operations

Object Oriented Programming: Concept of class, object and instances, Constructor, class attributes and destructors, Real time use of class in live projects, Inheritance, overlapping and overloading operators, Adding and retrieving dynamic attributes of classes, Programming using Oops support

Design with Classes: Objects and Classes, Data modeling Examples, Case Study An ATM, Structuring Classes with Inheritance and Polymorphism

UNIT V

Errors and Exceptions: Syntax Errors, Exceptions, Handling Exceptions, Raising Exceptions, User-defined Exceptions, Defining Clean-up Actions, Redefined Clean-up Actions. Graphical User Interfaces: The Behavior of Terminal Based Programs and GUI-Based, Programs, Coding Simple GUI-Based Programs, Other Useful GUI Resources. Programming: Introduction to Programming Concepts with Scratch.

Text Books

- 1) Fundamentals of Python First Programs, Kenneth. A. Lambert, Cengage.
- 2) Python Programming: A Modern Approach, Vamsi Kurama, Pearson.

Reference Books:

- 1) Introduction to Python Programming, Gowrishankar.S, Veena A, CRC Press.
- 2) Introduction to Programming Using Python, Y. Daniel Liang, Pearson.

e-Resources:

https://www.tutorialspoint.com/python3/python tutorial.pdf

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Voor II Comostor		L	Т	P	C
I Year – II Semester		3	0	0	3
	DATA STRUCTURES				

Course Objectives:

The objective of the course is to

- Introduce the fundamental concept of data structures and abstract data types
- Emphasize the importance of data structures in developing and implementing efficient algorithms
- Describe how arrays, records, linked structures, stacks, queues, trees, and graphs are represented in memory and used by algorithms

Course Outcomes:

After completing this course a student will be able to:

- Summarize the properties, interfaces, and behaviors of basic abstract data types
- Discuss the computational efficiency of the principal algorithms for sorting & searching
- Use arrays, records, linked structures, stacks, queues, trees, and Graphs in writing programs
- Demonstrate different methods for traversing trees

UNIT I

Data Structures - Definition, Classification of Data Structures, Operations on Data Structures, Abstract Data Type (ADT), Preliminaries of algorithms. Time and Space complexity.

Searching - Linear search, Binary search, Fibonacci search.

Sorting- Insertion sort, Selection sort, Exchange (Bubble sort, quick sort), distribution (radix sort), merging (Merge sort) algorithms.

UNIT II

Linked List: Introduction, Single linked list, Representation of Linked list in memory, Operations on Single Linked list-Insertion, Deletion, Search and Traversal ,Reversing Single Linked list, Applications on Single Linked list- Polynomial Expression Representation ,Addition and Multiplication, Sparse Matrix Representation using Linked List, Advantages and Disadvantages of Single Linked list, Double Linked list-Insertion, Deletion, Circular Linked list-Insertion, Deletion.

UNIT III

Queues: Introduction to Queues, Representation of Queues-using Arrays and using Linked list, Implementation of Queues-using Arrays and using Linked list, Application of Queues-Circular Queues, Deques, Priority Queues, Multiple Queues.

Stacks: Introduction to Stacks, Array Representation of Stacks, Operations on Stacks, Linked list Representation of Stacks, Operations on Linked Stack, Applications-Reversing list, Factorial Calculation, Infix to Postfix Conversion, Evaluating Postfix Expressions.

UNIT IV

Trees: Basic Terminology in Trees, Binary Trees-Properties, Representation of Binary Trees using Arrays and Linked lists. Binary Search Trees- Basic Concepts, BST Operations: Insertion, Deletion, Tree Traversals, Applications-Expression Trees, Heap Sort, Balanced Binary Trees- AVL Trees, Insertion, Deletion and Rotations.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIT V

Graphs: Basic Concepts, Representations of Graphs-Adjacency Matrix and using Linked list, Graph Traversals (BFT & DFT), Applications- Minimum Spanning Tree Using Prims & Kruskals Algorithm, Dijkstra's shortest path, Transitive closure, Warshall's Algorithm.

Text Books:

- 1) Data Structures Using C. 2nd Edition.Reema Thareja, Oxford.
- 2) Data Structures and algorithm analysis in C, 2nded, Mark Allen Weiss.

Reference Books:

- 1) Fundamentals of Data Structures in C, 2nd Edition, Horowitz, Sahni, Universities Press.
- 2) Data Structures: A PseudoCode Approach, 2/e, Richard F.Gilberg, Behrouz A. Forouzon, Cengage.
- 3) Data Structures with C, Seymour Lipschutz TMH

e-Resources:

- 1) http://algs4.cs.princeton.edu/home/
- 2) https://faculty.washington.edu/jstraub/dsa/Master_2_7a.pdf

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - II Semester		L	Т	Р	С
		0	0	3	1.5
	APPLIED CHEMISTRY LAB				

Introduction to Chemistry laboratory – Molarity, normality, primary, secondary standard solutions, volumetric titrations, quantitative analysis

- 1. Determination of HCl using standard Na₂CO₃ solution.
- 2. Determination of alkalinity of a sample containing Na₂CO₃ and NaOH.
- 3. Determination of Mn^{+2} using standard oxalic acid solution.
- 4. Determination of ferrous iron using standard K₂Cr₂O₇ solution.
- 5. Determination of Cu^{+2} using standard hypo solution.
- 6. Determination of temporary and permanent hardness of water using standard EDTA solution.
- 7. Determination of Fe^{+3} by a colorimetric method.
- 8. Determination of the concentration of acetic acid using sodium hydroxide (pH-metry method).
- 9. Determination of iso-electric point of amino acids using pH-metry method/conductometric method.
- 10. Determination of the concentration of strong acid vs strong base (by conductometric method).
- 11. Determination of strong acid vs strong base (by potentiometric method).
- 12. Determination of Mg^{+2} present in an antacid.
- 13. Determination of $CaCO_3$ present in an egg shell.
- 14. Estimation of Vitamin C.
- 15. Determination of phosphoric content in soft drinks.
- 16. Adsorption of acetic acid by charcoal.
- 17. Preparation of nylon-6, 6 and Bakelite (demonstration only).

Of the above experiments at-least 10 assessment experiments should be completed in a semester.

Outcomes: The students entering into the professional course have practically very little exposure to lab classes. The experiments introduce volumetric analysis; redox titrations with different indicators; EDTA titrations; then they are exposed to a few instrumental methods of chemical analysis. Thus at the end of the lab course, the student is exposed to different methods of chemical analysis and use of some commonly employed instruments. They thus acquire some experimental skills.

Reference Books

1. A Textbook of Quantitative Analysis, Arthur J. Vogel.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - II Semester		L	Т	Р	С
		0	0	3	1.5
	PVTHON PROGRAMMING LAB				

Course Objectives:

The Objectives of Python Programming are

- To learn about Python programming language syntax, semantics, and the runtime environment
- To be familiarized with universal computer programming concepts like data types, containers
- To be familiarized with general computer programming concepts like conditional execution, loops & functions
- To be familiarized with general coding techniques and object-oriented programming

Course Outcomes:

- Develop essential programming skills in computer programming concepts like data types, containers
- Apply the basics of programming in the Python language
- Solve coding tasks related conditional execution, loops
- Solve coding tasks related to the fundamental notions and techniques used in objectoriented programming

List of Experiments:

- 1) Write a program that asks the user for a weight in kilograms and converts it to pounds. There are 2.2 pounds in a kilogram.
- 2) Write a program that asks the user to enter three numbers (use three separate input statements). Create variables called total and average that hold the sum and average of the three numbers and print out the values of total and average.
- 3) Write a program that uses a *for* loop to print the numbers 8, 11, 14, 17, 20, ..., 83, 86, 89.
- 4) Write a program that asks the user for their name and how many times to print it. The program should print out the user's name the specified number of times.
- 5) Use a *for* loop to print a triangle like the one below. Allow the user to specify how high the triangle should be.
 - * ** ***
- 6) Generate a random number between 1 and 10. Ask the user to guess the number and print a message based on whether they get it right or not.
- 7) Write a program that asks the user for two numbers and prints *Close* if the numbers are within .001 of each other and Not close otherwise.
- 8) Write a program that asks the user to enter a word and prints out whether that word contains any vowels.
- 9) Write a program that asks the user to enter two strings of the same length. The program should then check to see if the strings are of the same length. If they are not, the program should print an appropriate message and exit. If they are of the same

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

length, the program should alternate the characters of the two strings. For example, if the user enters *abcde* and *ABCDE* the program should print out *AaBbCcDdEe*.

- 10) Write a program that asks the user for a large integer and inserts commas into it according to the standard American convention for commas in large numbers. For instance, if the user enters 1000000, the output should be 1,000,000.
- 11) In algebraic expressions, the symbol for multiplication is often left out, as in 3x+4y or 3(x+5). Computers prefer those expressions to include the multiplication symbol, like 3*x+4*y or 3*(x+5). Write a program that asks the user for an algebraic expression and then inserts multiplication symbols where appropriate.
- 12) Write a program that generates a list of 20 random numbers between 1 and 100.
 - (a) Print the list.
 - (b) Print the average of the elements in the list.
 - (c) Print the largest and smallest values in the list.
 - (d) Print the second largest and second smallest entries in the list
 - (e) Print how many even numbers are in the list.
- 13) Write a program that asks the user for an integer and creates a list that consists of the factors of that integer.
- 14) Write a program that generates 100 random integers that are either 0 or 1. Then find the longest run of zeros, the largest number of zeros in a row. For instance, the longest run of zeros in [1,0,1,1,0,0,0,0,1,0,0] is 4.
- 15) Write a program that removes any repeated items from a list so that each item appears at most once. For instance, the list [1,1,2,3,4,3,0,0] would become [1,2,3,4,0].
- 16) Write a program that asks the user to enter a length in feet. The program should then give the user the option to convert from feet into inches, yards, miles, millimeters, centimeters, meters, or kilometers. Say if the user enters a 1, then the program converts to inches, if they enter a 2, then the program converts to yards, etc. While this can be done with if statements, it is much shorter with lists and it is also easier to add new conversions if you use lists.
- 17) Write a function called *sum_digits* that is given an integer num and returns the sum of the digits of num.
- 18) Write a function called *first_diff* that is given two strings and returns the first location in which the strings differ. If the strings are identical, it should return -1.
- 19) Write a function called *number_of_factors* that takes an integer and returns how many factors the number has.
- 20) Write a function called *is_sorted* that is given a list and returns True if the list is sorted and False otherwise.
- Write a function called root that is given a number x and an integer n and returns x^{1/n}. In the function definition, set the default value of n to 2.
- 22) Write a function called primes that is given a number n and returns a list of the first n primes. Let the default value of n be 100.
- 23) Write a function called merge that takes two already sorted lists of possibly different lengths, and merges them into a single sorted list.
 - (a) Do this using the sort method. (b) Do this without using the sort method.
- 24) Write a program that asks the user for a word and finds all the smaller words that can be made from the letters of that word. The number of occurrences of a letter in a smaller word can't exceed the number of occurrences of the letter in the user's word.
- 25) Write a program that reads a file consisting of email addresses, each on its own line. Your program should print out a string consisting of those email addresses separated by semicolons.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

- 26) Write a program that reads a list of temperatures from a file called *temps.txt*, converts those temperatures to Fahrenheit, and writes the results to a file called ftemps.txt.
- 27) Write a class called Product. The class should have fields called name, amount, and price, holding the product's name, the number of items of that product in stock, and the regular price of the product. There should be a method *get_price* that receives the number of items to be bought and returns a the cost of buying that many items, where the regular price is charged for orders of less than 10 items, a 10% discount is applied for orders of between 10 and 99 items, and a 20% discount is applied for orders of 100 or more items. There should also be a method called *make_purchase* that receives the number of items to be bought and decreases amount by that much.
- 28) Write a class called Time whose only field is a time in seconds. It should have a method called *convert_to_minutes* that returns a string of minutes and seconds formatted as in the following example: if seconds is 230, the method should return '5:50'. It should also have a method called *convert_to_hours* that returns a string of hours, minutes, and seconds formatted analogously to the previous method.
- 29) Write a class called Converter. The user will pass a length and a unit when declaring an object from the class—for example, c = Converter(9,'inches'). The possible units are inches, feet, yards, miles, kilometers, meters, centimeters, and millimeters. For each of these units there should be a method that returns the length converted into those units. For example, using the Converter object created above, the user could call c.feet() and should get 0.75 as the result.
- 30) Write a Python class to implement pow(x, n).
- 31) Write a Python class to reverse a string word by word.
- 32) Write a program that opens a file dialog that allows you to select a text file. The program then displays the contents of the file in a textbox.
- 33) Write a program to demonstrate Try/except/else.
- 34) Write a program to demonstrate try/finally and with/as.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Voon II Comoston		L	Т	P	C
I Year – II Semester		0	0	3	1.5
	DATA STRUCTURES LAB				

Course Objectives:

The objective of this lab is to

• Demonstrate the different data structures implementation.

Course Outcomes:

By the end of this lab the student is able to

- Use basic data structures such as arrays and linked list.
- Programs to demonstrate fundamental algorithmic problems including Tree Traversals, Graph traversals, and shortest paths.
- Use various searching and sorting algorithms.

List of Experiments:

Exercise -1 (Searching)

a) Write C program that use both recursive and non recursive functions to perform Linear search for a Key value in a given list.

b) Write C program that use both recursive and non recursive functions to perform Binary search for a Key value in a given list.

Exercise -2 (Sorting-I)

a) Write C program that implement Bubble sort, to sort a given list of integers in ascending order

b) Write C program that implement Quick sort, to sort a given list of integers in ascending order

c) Write C program that implement Insertion sort, to sort a given list of integers in ascending order

Exercise -3(Sorting-II)

a) Write C program that implement radix sort, to sort a given list of integers in ascending order

b) Write C program that implement merge sort, to sort a given list of integers in ascending order

Exercise -4(Singly Linked List)

a) Write a C program that uses functions to create a singly linked list

b) Write a C program that uses functions to perform insertion operation on a singly linked list

c) Write a C program that uses functions to perform deletion operation on a singly linked list

d) Write a C program to reverse elements of a single linked list.

Exercise -5(Queue)

a) Write C program that implement Queue (its operations) using arrays.

b) Write C program that implement Queue (its operations) using linked lists

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Exercise -6(Stack)

- a) Write C program that implement stack (its operations) using arrays
- b) Write C program that implement stack (its operations) using Linked list
- c) Write a C program that uses Stack operations to evaluate postfix expression

Exercise -7(Binary Tree)

d) Write a recursive C program for traversing a binary tree in preorder, inorder and postorder.

Exercise -8(Binary Search Tree)

- a) Write a C program to Create a BST
- b) Write a C program to insert a node into a BST.
- c) Write a C program to delete a node from a BST.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Voor II Comostor		L	Т	Р	С
I Year – II Semester		2	0	0	0
	ENVIRONMENT SCIENCE				

Course Objectives:

The objectives of the course are to impart:

- Overall understanding of the natural resources.
- Basic understanding of the ecosystem and its diversity.
- Acquaintance on various environmental challenges induced due to unplanned anthropogenic activities.
- An understanding of the environmental impact of developmental activities.
- Awareness on the social issues, environmental legislation and global treaties.

UNIT I

Multidisciplinary nature of Environmental Studies: Definition, Scope and Importance – Sustainability: Stockholm and Rio Summit–Global Environmental Challenges: Global warming and climate change, acid rains, ozone layer depletion, population growth and explosion, effects. Role of information technology in environment and human health.

Ecosystems: Concept of an ecosystem. - Structure and function of an ecosystem; Producers, consumers and decomposers. - Energy flow in the ecosystem - Ecological succession. - Food chains, food webs and ecological pyramids; Introduction, types, characteristic features, structure and function of Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems.

UNIT II

Natural Resources: Natural resources and associated problems.

Forest resources: Use and over – exploitation, deforestation – Timber extraction – Mining, dams and other effects on forest and tribal people.

Water resources: Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems.

Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources.

Food resources: World food problems, changes caused by non-agriculture activities-effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity.

Energy resources: Growing energy needs, renewable and non-renewable energy sources use of alternate energy sources.

Land resources: Land as a resource, land degradation, Wasteland reclamation, man induced landslides, soil erosion and desertification; Role of an individual in conservation of natural resources; Equitable use of resources for sustainable lifestyles.

UNIT III

Biodiversity and its conservation: Definition: genetic, species and ecosystem diversityclassification - Value of biodiversity: consumptive use, productive use, social-Biodiversity at national and local levels. India as a mega-diversity nation - Hot-sports of biodiversity -Threats to biodiversity: habitat loss, man-wildlife conflicts. - Endangered and endemic species of India – Conservation of biodiversity: conservation of biodiversity.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIT IV

Environmental Pollution: Definition, Cause, effects and control measures of Air pollution, Water pollution, Soil pollution, Noise pollution, Nuclear hazards. Role of an individual in prevention of pollution. - Pollution case studies, Sustainable Life Studies. Impact of Fire Crackers on Men and his well being.

Solid Waste Management: Sources, Classification, effects and control measures of urban and industrial solid wastes. Consumerism and waste products, Biomedical, Hazardous and e – waste management.

UNIT V

Social Issues and the Environment: Urban problems related to energy -Water conservation, rain water harvesting-Resettlement and rehabilitation of people; its problems and concerns. Environmental ethics: Issues and possible solutions. Environmental Protection Act -Air (Prevention and Control of Pollution) Act. –Water (Prevention and control of Pollution) Act - Wildlife Protection Act -Forest Conservation Act-Issues involved in enforcement of environmental legislation. -Public awareness.

Environmental Management: Impact Assessment and its significance various stages of EIA, preparation of EMP and EIS, Environmental audit. Ecotourism, Green Campus – Green business and Green politics.

The student should Visit an Industry / Ecosystem and submit a report individually on any issues related to Environmental Studies course and make a power point presentation.

Text Books:

- 1) Environmental Studies, K. V. S. G. Murali Krishna, VGS Publishers, Vijayawada
- 2) Environmental Studies, R. Rajagopalan, 2nd Edition, 2011, Oxford University Press.
- 3) Environmental Studies, P. N. Palanisamy, P. Manikandan, A. Geetha, and K. Manjula Rani; Pearson Education, Chennai

Reference Books:

- 1) Text Book of Environmental Studies, Deeshita Dave & P. Udaya Bhaskar, Cengage Learning.
- 2) A Textbook of Environmental Studies, Shaashi Chawla, TMH, New Delhi
- 3) Environmental Studies, Benny Joseph, Tata McGraw Hill Co, New Delhi
- 4) Perspectives in Environment Studies, Anubha Kaushik, C P Kaushik, New Age International Publishers, 2014